当前位置:赋力文档网 > 专题范文>公文范文> 正文

企业信用风险评估文献综述

发表于:2022-10-21 08:55:05 来源:网友投稿

摘要:综述中外学者研究商业银行评估企业客户信用情况目前使用的方法,定性评估方法主要是人工专家法,定量评估方法包括统计方法,如:多元判别分析法,Logistic模型分析;知名公司的信用评估方法,如:Credit Metrics模型,Credit Portfolio View模型,KMV模型(或Credit Monitor模型),Credit Risk+模型;人工智能方法,如:神经网络法,整数规划,遗传算法,支持向量机等方法,还存在很多问题需要解决,可以继续进行研究。

关键词:商业银行;信用风险评估;定性方法;定量方法

中图分类号:F2

文献标识码:A

文章编号:1672-3198(2013)09-0027-02

企业信用评估和企业财务预警是企业财务管理研究的重要课题。诸多学者将两个问题一起进行研究,这两者之间还是有本质区别的。财务预警即财务失败预警,是指借助企业提供的财务报表、经营计划及其他相关会计资料,利用财会、统计、金融、企业管理、市场营销理论,采用比率分析、比较分析、因素分析及多种分析方法,对企业的经营活动、财务活动等进行分析预测,以发现企业在经营管理活动中潜在的经营风险和财务风险,并在危机发生之前向企业经营者发出警告。信用评估本质上是对企业履约各种承诺能力和信用程度进行全面评估,预测未来偿债可能性来辨识不同企业的方法。服务的对象有商业银行、金融监管机构、与受评对象有业务往来的商业客户以及社会公众和投资者。

(1)定性评估方法:人工专家分析法,又被称为古典信用分析方法,包括5C、5P、5W法,5C法指贷款申请企业或个人的道德状况,偿债能力,贷款申请企业或个人的财产状况,可用于进行贷款申请时抵押担保的资产价值,宏观经济状况。 5W法指贷款申请人、申请贷款的使用、贷款的时间长度、担保资产价值及还款方式。目前我国商业银行实务中仍主要采用的信用评估分析方法。

(2)定量评估方法。

①统计方法:多元判别分析法(Multi-linear Discriminate Analysis)是较早应用于企业信用评估的多元统计方法。Altman(1968)最早提出Z-score模型对企业运营财务危机预警、企业违约预测问题进行研究,使用较少的财务比率迅速进行判断分析,使用年度报表的数据运用财务比率进行分析:企业运营成本/平均总资产、留存收益/平均总资产、息税前利润总额/平均总资产、普通股股东权益合计/平均总负债、营业收入/平均总资产,并且对三十多家样本公司进行分析,得到准确率较高的分析结果,该模型属于贝叶斯判别,用样本修正已有的先验概率分布得到后验概率分布。这篇经典论文开创了企业破产预测,财务危机预警,信用评估分析的先河。Altman(1977)在前述论文的基础上进行了完善,又加入几个财务比率建立ZETA模型,使用总资产收益率(利润总额/平均总资产)、利润增长率(利润总额/上一年利润总额)、利息保障倍数(息税前利润总额/利息费用)、留存收益/平均总资产、流动比率(流动资产/流动负债)、平均总资产、公司股票市价等财务比率,得到比签署模型更好的分析结果。Logistic模型分析。Martin(1977)使用财务比率进行企业经营财务预警及企业贷款违约分析,使用多元统计学中的Logistic回归方法,使用1970至1971年的报表数据从的美联储成员银行5600多家中选取58家属于财务困境,违约样本的银行进行分析测算,使用资产净利率(利润总额/平均总资产)等8个财务比率,进行分析测算,并且分析不同的信息使用者的风险偏好差异,如投资人和债权人,测算不同的风险预警系数,便于信息使用者更好地作出分析决策,得到较好的分析结果,并且使用该多元回归模型与前述的Z-Score模型,ZETA模型测算的结果进行对比分析,得到优于前述模型的预测数据。吴世农(2001)收集我国上市公司1998至2002年A股市场的ST公司共计七十多家,收集样本数据的时间是公司转化成ST的年度,并且选取相关行业的七十多家作为对照组样本,进行横截面数据分析,选用不同的计量模型进行对比研究,主要有线性概率模型(LPM),Fisher二类线性判定,Logistic模型等多元统计方法对企业财务进行预警研究,最终结果是Logistic模型的预测准确率均高于Fisher判别分析法和LPM的准确率。于立勇、詹捷辉(2004)也使用Logistic模型,选取商业银行的贷款企业客户的财务数据进行信用违约的分析,得到较好的测算概率。方洪全、曾勇(2004)在银行信用风险评估方法实证研究及比较分析中运用Logit模型分析。李志辉、李萌(2005)选取了195家上市公司为样本,Logistic模型的准确率高于线性判别模型神经网络模型。Junni L. Zhang(2010)运用贝叶斯加分类树法对德国公司财务报表数据进行偿债能力进行有效得分类。

②信用风险评估模型。Credit Metrics(信用计量模型)是摩根大通等美国知名金融机构采用用VaR(在险价值模型)的思路,对个人和企业的贷款以及其他金融资产进行价值估计和风险预测的计算方法。麦肯锡公司提出的Credit Portfolio View模型(信贷组合审查模型),是改造Credit Metrics模型,考虑到周期性宏观经济因素,结合信用风险评级转移和宏观经济变量如年度经济增长率、市场利率、政府支出等建立关联模型,使用蒙特卡罗技术模拟宏观经济周期性因素的计算得到评级转移概率。KMV模型(Credit Monitor模型)(是美国KMV公司提出后被穆迪公司收购),该模型是可以对上市公司的信贷违约概率进行预测分析。张玲等(2004)运用KMV模型评估我国上市公司ST公司和非ST公司的信用风险后得到,改变KMV模型的相关变量可以至少提前2年预警我国上市公司的信用违约风险,并且可以提前4年进行上市公司的信用风险变化趋势的预测。戴志锋等(2005) 运用KMV对我国上市公司数据和某国有商业银行非上市公司的信贷数据进行验证,实证结果表明非上市公司模型在中国具有一定的预测能力,但预测准确率低于欧美国家。Credit Risk+模型(信用风险附加模型)是由瑞士信贷银行金融产品部(CSFP)开发的,它是一个违约模型(Default Model)。

③人工智能方法:神经网络。陈雄华等(2002)采用人工神经网络模型研究企业信用等级的评估问题,按照企业样本分为制造业和非制造业两大类,利用偏相关分析方法建立了企业信用评级的指标体系,实验结果表明神经网络模型具有更好的预测准确性。于立勇(2003)收集一百多个企业作为训练样本,运用神经网络模型进行信用违约风险分析,得到有效的预测结果。章忠志、符林、唐换文(2003)使用神经网络模型,选取28个企业数据做为样本进行分析,预测结果准确率达到90%以上。徐佳娜、西宝(2004)使用人工神经网络模型与层次分析法(AHP)相结合建立模型对企业信用风险进行评估,预测结果说明该模型比已有的其他模型准确更高。张卫东等(2006)建立模型结合前馈型神经网络、遗传算法和模糊数学方法来,评估商业银行企业客户的信用风险,使用Matlab软件对选取的商业银行企业客户数据进行测算,得到的结果表明准确率比以前的模型方法有所提高,模型更具鲁棒性。夏红芳(2007)通过与上海某商业银行的合作,对其1999-2005年的贷款明细和公司财务数据进行了系统研究,运用粗糙集理论的约简功能,从中选出最能反映企业信用状况的8项财务指标,再应用模糊神经网络方法进行信用评估,实证研究表明所提方法具有较高精度。但是使用人工神经网络模型需要根据实际的样本数据不断调整系数,相对而言模型的鲁棒性不够强。戴芬(2009)根据中小企业信用评估指标体系,提出了一种基于蚁群神经网络的评估模型。结果表明蚁群神经网络的预测方法与传统的BP 神经网络预测方法相比,具有较强的泛化能力,应用在中小企业信用评估系统中具有很高的评估准确率。

整数规划法。薛锋(2006)选取上市公司数据,使用混合整数规划法,建立企业信用风险评估模型进行信用风险评估,模型可以满足非参数检验,也不需要样本数据服从正态分布,可以较为广泛的应用,经数据实际测算的结果说明,该模型鲁棒性较好,预测效果较好,准确率较高。遗传算法。薛惠锋(2006)利用人工智能方法——GA-PSO混合规划算法构建企业信用风险评估模型。并利用上证50若干企业的实际数据对模型进行了实证检验。实证结果显示该模型能有效预测上市企业的信用风险状况。该模型在收敛性能及预测准确率等方面优于基于传统的多元回归方法及GP方法的信用风险评估模型。Jonathan N. Crook(2007) 参考诸多文献比较线形回归(LDA),Logistic回归,决策树,数学规划法,神经网络法,遗传算法,遗传编程,K近邻法,支持向量机几种方法,认为支持向量机法的准确率相对较高。

从以上对国内外研究现状的分析可知,尽管国内外已有许多专家学者对商业银行客户信用评估进行大量的研究,但在实际应用中涉及中小企业的研究较少,未考虑我国企业普遍存在的内部人控制的企业中管理者个人因素对企业信用的影响,限制了模型的适用范围。

参考文献

[1]Altman,E.I.,Financial ratio discriminant analysis and the prediction of corporate bankruptcy[J].Journal of Finance,1968,23(4):189-209.

[2]Altman,E.I.,R.Haldeman & P.Narayanan,ZETA analysis:A new model to identify bankruptcy risk of corporations[J].Journal of Banking and Finance,1977,(l):29-54.

[3]D.Martin.Early warning of bank failure: A Logit regression approach[J].Journal of banking and finance,1977,(1):249-276.

[4]吴世农,黄世忠.我国上市公司财务困境的预测模型研究[J].经济研究,2001,(6):46-55.

[5]于立勇,詹捷辉.基于Logistic回归分析的违约概率预测研究[J].财经研究,2004,(9):15-23.

[6]方洪全,曾勇.银行信用风险评估方法实证研究及比较分析[J].金融研究,2004,(1):62-69.

[7]李志辉,李萌.我国商业银行信用风险识别模型及其实证研究[J].经济科学,2005,(5):61-71.

[8]Junni L. Zhang,Wolfgang K. Hrdle The Bayesian Additive Classification Tree applied to credit risk modeling Computational[J].Statistics and Data Analysis 54 (2010) 1197_1205.

[9]张玲,杨贞柿,陈收.KMV模型在上市公司信用风险评估中的应用研究[J].系统工程,2004,(11).

[10]戴志锋,张宗益,陈银忠.基于期权定价理论的中国非上市公司信用风险度量研究[J].管理科学,2005,(6).

[11]陈雄华,林成德,叶武.基于神经网络的企业信用等级评估系统[J].工程学报,2002,(6):570-575.

[12]于立勇.商业银行信用风险评估预测模型研究[J].管理科学学报,2003,(5):46-52.

[13]章忠志,符林,唐换文.基于人工神经网络的商业银行信用风险[J].模型经济数学,2003,(3):42-47.

[14]徐佳娜,西宝.基于AHP-ANN模型的商业银行信用风险评估[J].哈尔滨理工大学学报,2004,(3):94-98.

[15]张卫东,韩云昊,米阳于.GA-BP模糊神经网络的商业银行信用风险评估[J].工业工程与管理,2006,(5):81-84.

[16]夏红芳.商业银行信用风险度量与管理研究[D].南京:南京航空航天大学,2007,(8).

[17]戴芬,刘希玉,王晓敏.蚁群神经网络在中小企业信用评估中的应用[J].计算机技术与发展,2009,(10):218-221.

[18]薛锋,柯孔林.基于混合整数规划法的企业信用风险评估研究[J].中国管理科学,2006,(2):39-44.

[19]薛惠锋,林波,蔡琳.基于GA-PSO混合规划算法的企业信用风险评估模型[J].西北大学学报(哲学社会科学版),2006,(3):38-40.

[20]Jonathan N. Crook,David B. Edelman,Lyn C. Thomas Recent developments in consumer credit risk assessment[J].European Journal of Operational Research 183(2007):1447–1465.

推荐访问:综述 企业信用 文献 风险评估