三角形三边关系优秀教学设计1 教学内容 人教版义务教育课程实验教科书数学四年级下册P82页。 教学目标 1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。 2.能下面是小编为大家整理的三角形三边关系教学设计,菁选五篇,供大家参考。
三角形三边关系优秀教学设计1
教学内容
人教版义务教育课程实验教科书数学四年级下册P82页。
教学目标
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
教具、学具准备
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
教学过程
一、创设情境,导入新课
师:(出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)
师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?
(学生困惑,沉默不语.)
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
(板书课题:三角形的三边关系)
二、设疑激趣,动手探究
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
你的重大发现
三、汇报交流,发现规律
让每组同学汇报围成和围不成三角形的数据。
师:同样用三根小棒,为什么有的能围成三角形,为什么有的不能围成三角形呢?你从中发现了什么?
根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)
师:到底什么样长度的三根小棒可以围成三角形呢?
结论一:两边之和大于第三边。
师:同学们都同意这个结论吗?有不同意见吗?
根据学生的情况,随机用不能围成的一组数据,如“3、7、10”举一例:3+10>7,那为什么不能围成一个三角形呢?
师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?
进一步得出
结论二:三角形任意两边之和大于第三边。
师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。
师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。
四、学以致用,解决问题
1.解释老师所行路线的原因。
2.判断。
(2)(3)(4)
3.(课件演示)小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?
五、全课小结。
三角形三边关系优秀教学设计2
教学目标:
1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。
3.培养学生积极的学习态度和乐于探究的数学情感。
教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。
教学难点:运用三角形三边的关系解决实际问题。
教学准备:课件
教学过程:
一、谈话引入
1.举例:生活中哪些物体的面是三角形的?
2.复习三角形的各部分名称。
提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?
引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……
3.导入新课。
三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)
二、交流共享
1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?
2.操作交流。
(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。
教师巡视,了解学生的操作情况。
(2)小组交流。
布置学生将各自的操作情况在四人小组内进行交流。
(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?
学生回答预设:
①选择8cm、5cm、4cm三根小棒,能围成三角形。
②选择5cm、4cm、2cm三根小棒,能围成三角形。
③选择8cm、4cm、2cm三根小棒,不能围成三角形。
④选择8cm、5cm、2cm三根小棒,不能围成三角形。
追问:第③种情况和第④种情况为什么不能围成三角形?
引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。
教师小结:因为4cm+2cm8cm,5cm+2cm8cm,所以不能围成三角形。
3.探索规律。
师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?
(1)布置探索任务。
从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?
(2)学生独立探索。
(3)交流汇报。
第①种情况:4+58、4+85、5+84;
第②种情况:4+25、4+52、5+24。
小结:任意两根小棒长度的和一定大于第三根小棒。
4.验证规律。
提问:三角形任意两边长度的和一定大于第三边吗?
(1)画一画:用三角尺画一个三角形。
(2)量一量:量出三角形的各边长度。(单位:毫米)
(3)算一算:算出任意两边之和与第三边长度的关系。
(4)总结规律。
提问:通过验证,你发现三角形三边的长度有哪些关系?
师生共同总结得出:三角形任意两边长度的和大于第三边。
追问:对于“任意两边”这四个字,你是怎么理解的?
5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?
引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。
三、反馈完善
1.完成教材第78页“练一练”第1题。
先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。
2.完成教材第78页“练一练”第2题。
这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
三角形三边关系优秀教学设计3
教学目标:
知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
过程与方法:.积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象
情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学重点:三角形三边关系的实验与探究。
教学难点:利用三角形三条边之间的关系解决实际问题。
教具准备:三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt
教学过程:
一、导入。
1、谈话创设情境:
这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆*曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)
2、复习旧知:
(1)(欣赏图片)你看到了什么?
(2)那你能说一说,你对三角形都有哪些了解?
(3)三个顶点,三个角,三条边,三角形具有稳定性;
(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。
3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课
二、动手操作、探究新知。
(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?
操作要求:
1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员
2、测量员量出你所选择的纸条的长度;
3、记录员做记录;
4、操作员动手拼三角形,把你拼出来的图形贴在下面;
5、组长汇报结果。
注意:相邻的两条线段要端点相连。
(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。
展示操作结果:
试验次数三边长度(cm)结果三角形三条边的长度关系
(1)3、5、9否较短的两条边长度之和小于第三边3+5<9
(2)3、6、9否较短的两条边长度之和等于第三边3+6=9
(3)3、5、7是较短的两条边长度之和大于第三边3+5>7
(4)5、6、7是较短的两条边长度之和小于第三边5+6>7
(5)5,8,13否较短的两条边长度之和等于第三边5+8=13
(6)7,11,12是较短的两条边长度之和大于第三边7+11>12
(7)18,7,5否较短的两条边长度之和小于第三边5+7<18
(8)11,4,15否较短的两条边长度之和等于第三边4+11=15
(三)引导学生发现特性:(课件演示)
1、两条边的长度之和小于或等于第三条边的长度不能围成三角形
2、较短的两条边的长度之和大于第三条边的长度能围成三角形
3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)
4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?
三、精彩练习、拓展提升。(课件出示)
在能围成三角形的各组小棒下面画“√”。(单位:厘米)
(5)1cm2cm3cm()(6)4cm2cm3cm()
(7)3cm4cm5cm()(8)3cm3cm5cm()
四、学以致用。
(一)、课件出示:课本82页例3情境图。
1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?
2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?
3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)
(二)完善表格。
小棒长度(厘米)能否围成三角形
第一根第二根第三根
35
35
35
35
35
35
35
35
五、课堂总结。
同学们,通过今天的研究你有什么收获吗?
1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。
2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
板书设计:
三角形三边关系
三角形任意两边之和大于第三边。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
三角形三边关系优秀教学设计4
一、说教材
《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于"空间与图形"的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在*面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。
几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历"数学化"、"做数学"等过程,强调在教师的引导作用下,由"获得知识结论快乐"转变为"探究发现知识快乐",并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:
(一)教学目标
1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。
2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。
3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。
(二)说教学重难点
探究发现"三角形任意两条边的和大于第三边"是教学重点,而理解"任意两边"是本节课的教学难点。
接下来说说这节课的教法与学法
二、说教法
新课标指出,教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水*和已有的知识经验基础之上。新课程改革要求教师要由传统意义上知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;课堂教学要体现以学生为中心,让学生真正成为学习的主人。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在这一系列活动中经历"数学化"的过程
三、说学法
有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验"做数学"的过程。
以下是我的而教学流程。
四、说教学流程教学流程按照8个环节进推进:
第一环节:矛盾冲突。
兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是15厘米,13厘米10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)
在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处"魔术"的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。
第二环节:初建模型。
新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)
(1)从这5根小棒中任意选取3根围一个三角形;
(2)同桌2人合作,共同摆小棒。
(3)摆完后共同观察,并把结果记录在表格中。
(4)音乐响起开始,音乐停止时活动结束。
看哪一组完成最多最好。
这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。
反馈(1)335(2)337
(3)338(4)357
(5)358(6)378
(7)578(ppt出示表格)
观察:三根小棒在什么情况下能围城三角形呢?
最后引导归纳:三角形两条边的和大于第三条边(师板书)
随着教学活动的逐步展开,教师围绕"核心知识"精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。
第三个环节,完善模型。
回到变魔术的环节,验证学生没有围成的三角形三边的关系,9+15<26再一次引起冲突,但是9+15>5怎么也不能围成三角形呢?
完善性质:三角形任意两边的和大于第三边
验证老师变出的三角形三边的关系,10+13>1510+15>1315+13>10
第四环节:验证模型。
验证:让学生画出任意三角形,量出三条边的长短再算一算,三边之间的关系。
引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。
第五环节:应用模型。
判断下面的小棒能否围成三角形
(1)2厘米3厘米8厘米()
(2)4厘米7厘米8厘米()
(3)6厘米5厘米8厘米()
(4)5厘米14厘米9厘米()
(5)5厘米9厘米13厘米()
第六环节:优化模型、并体会极限思想。
——优化
有的学生很快做出判断,他们有什么诀窍?
这一过程实际上是打破刚才建构的数学模型,抓住问题本质属性,留下两条短边与长边比较,形成最优化的数学模型结构——两条短边的和大于第三边,
——极限思想
让学生重点观察(4)中的数据
提问:5厘米和9厘米能与多长的小棒围成三角形?
学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)
这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。
第七个环节、走进生活
老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释
《三角形三边关系》说课
走小路近(让学生说明理由)
(ppt显示草坪)
还走这条路吗?
这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)
第八个环节:课后延伸。
播放《将军饮马》的故事(课件呈现图)
教师讲述:古希腊有一位聪明国人的学者,名叫海伦,有一天,一位将军不远千里来向他请教一个百思不得其解的问题,将军从A地出发到河边饮马,再到B地视察军营(出示图),怎么走路线最短?(出示路线图)你们能用今天学习的知识解决吗?
五、说板书设计
板书设计力求做到重点突出,一目了然。
纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。
三角形三边关系优秀教学设计5
教学理念:
1、尊重学生的认知规律
三角形“任意两边的和大于第三边”之内容是人教版新课标实验教材四年级下册的一个内容,它是在熟悉了什么是三角形的基础上进行教学的。我力求从实验入手,让学生通过摆小棒,判定如何才能搭成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形中三边之间的这一特殊关系。这样的设计符合学生的认知规律,既增加学生的学习兴趣,又使学生积累了大量的操作经验和研究经验。
2、以活动为基础,在活动中探究新知
“自主探究、合作交流、亲身实践”是学习数学的一种重要的方式,本节课的设计我改变了“教师重讲知识、学生轻听知识”的模式,而是改为教师指导学生动手操作,自主探索,发现三角形任意两边的和大于第三边作为目的,使学生的主题地位得到了落实,学生真正地成了学习的主人。
教学目标:
1、使学生知道三角形任意两边之和大于第三边。
2、让学生经历探究数学的过程:猜测----实验----结论,感受数学思想在生活、学习中的应用。
3、通过学生动手操作、想象猜测,近一步深化空间概念,提高观察能力和动手操作能力。
教学重、难点:
引导学生想象、猜测、实验,研究什么样的三条线段能围成三角形,发现三角形三条边的关系。
教法方法:
采用问题性教学模式.“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。并结合先进手段实施教学,突出重点,突破难点。
学法指导:
通过学生动手、动口、动脑等活动,达到主动探索,发现问题的目的;引导学生分析、讨论,得出解决问题的方法,使他们的思维得到了锻炼;增强数学应用意识,合作意识,养成及时回纳总结的良好学习习惯。
教学准备:
课件、小棒若干
教学过程:
一、创设情景,引渗透新课
师:今天我们打开课本的82页来认识一位小朋友——小明,你们看,他在干什么?
生:他去上学。
师:小明从家到学校有几条路线?(观察后指名说)
生:3条。
师:现在小明遇到麻烦了,我们帮帮他的忙好吗?
生:好。
师:小明今天想快一点去学校走哪一条路最近?(把你的想法和小组内的同学说一说,然后指名说)
生:走中间哪一条路最近。
师:同意吗?
生:同意。
师:为什么呢?谁来说一下自己的理由?
生:我量出来的。
师:谁还有别的方法吗?
生:直走进,拐弯走远。
生:我们以前学过了,两点之间线段最短。
师:同学们都有自己的想法,有的是用测量的方法知道的,有的是结合自己的生活经验,有的是用以前学过的知识。但是生活中的这些路线我们是不可能用尺子去量出他的长度的,这个时候我们该怎么办?
师:下面我们就用数学的眼光、数学知识看看能不能解决这个问题?请同学们仔细观从小明到邮局再到学校近似于一个什么图形呢?
生:三角形。
师:那中间这条路线是三角形的一条边,走旁边的路线实际是三角形的什么呢?孩子们仔细看一下?
生:另外两条边的和。
师:根据大家的判断,走过的三角形两条边的和要比第三条边长。那么是不是所有的三角形的三条边都有这样的关系呢?下面我们来做个实验。
【设计说明:从学生已有的生活经验出发,给学生创设出认识的生活情景,很自然的引入课题,容易产生亲近感。但后来的知识障碍让学生感到用以前的知识解决不了这个问题,必须用一种新的知识来解决,从而激发求知欲望,为下一步的探索新知做好铺垫。】
二、小组合作,探究新知
1、实验一:从准备好的小棒中任意取出三根摆一个三角形,观观你能发现什么?
学生动手操作。交流结果。
生:能。
生:不能。
师:有的同学用三根小棒摆成了一个三角形,而有的同学没有,这到底是什么原因呢?下面我们就对这两种情况做一个深入的研究。
【设计说明:学生自然已经知道什么样的图形是三角形,但对于什么样的三根小棒能摆成一个三角形还处于模糊状态。此时的两种结果正可以激发学生的探究热情。】
2、实验二:进一步研究在什么情况下能组成三角形?
(1)从小棒中任意拿出三根,看观能不能摆成一个三角形?把能摆成三角形和不能摆成三角形的情况分别填写在表格实验内。
小棒的长度(厘米)
三角形三边关系优秀教学设计 (菁选5篇)扩展阅读
三角形三边关系优秀教学设计 (菁选5篇)(扩展1)
——《三角形的三边关系》说课稿3篇
《三角形的三边关系》说课稿1
一、问好
尊敬的各位评委老师,大家下午好,我是今天的 5 号考生,我今天说课的题目是《三角形的三边关系》。
二、总括语
我将以教什么怎么教,以及为什么这么教为思路,具体从教材分析,学情分析,教法学法,教学过程以及板书设计五个方面加以说明。
三、教材分析
教材是进行教学的评判依据,是学生获取知识的重要来源,因此,我将分析教材放在首要位置。
本节课选自人教版小学数学四年级下册第五单元。本单元围绕三角形的相关性质展开,本课需要学生在对三角形基本定义和特征了解的基础上,掌握三角形三边关系即两边之和大于第三边的组成特征。本课内容于本章之中起着承上启下的作用。
四、教学目标
新课标要求教学目标是多元的,主要包括学会、会学、乐学三方面内容,基于此我将我
的教学目标也设立为以下三方面:
1.知识与技能目标:理解和掌握三角形的三边关系;这也是本堂课的重难点。
2.过程与方法目标:引导同学们将自主学习和合作探究的方法应用到猜想、验证以及总结的
过程当中去。
3.情感态度与价值观目标:通过对本课的学习,领悟数学的魅力,并愿意将我们学的理论知识应用在实践当中。
1. 直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2. 活动探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。
3. 集体讨论法:针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。
五、学情分析
在对教材有了基本了解的基础上,我们还应该对学生数学学习情况的基础有一个了解,小学四年级的学生正处于感性思维向理性思维转换的阶段,对于一些简单数学问题已经有了了解和掌握,只是对一些个深入的问题尚不能独立解决,他们好奇心强,好玩好动,听课过程中注意力不够集中,因此需要老师在教学过程当中有一个积极的引导。
六、教学教法
为了逐步实现教学目标,解决重难点问题,根据学生身心发展和数学学习的特点以及以学定教的原则,我将会采取讲授法,提问法,分析法进行授课。
正所谓授人以鱼,不如授人以渔,我将采取诱思深究,自主学习,合作探究,举一反三的方法相结合,提高同学们学习的积极性。
七、教学过程
以上所有的努力都是为了更科学合理的呈现我们的教学过程!为了让同学们真正做到学有所获,我将我的教学过程设计如下:
好的导入未成曲调,先有情,像磁石一样把学生牢牢的吸引住。因此我将采取情景创设的方式进行导入:同学们,我们一起看大屏幕,大屏幕上的地点大家熟不熟悉?哎,这里分别是咱们学校、建行和火车站,大家看,如果将这三个地点的路线连在一起的话会形成一个什么形状,对三角形。现在呀,老师想要从学校到建行取一些钱,走哪条路线会更近?哦,你是说直走?那现在老师在建行取完钱去火车站怎么走?你也说直走。那老师想问问大家,为什么大家会觉得在三角形的路线当中走其中一边会走另外两边花费更短的时间呢?大家大部分都是使用的.生活知识得到的这个结论,那么有没有什么办法能够验证我们的这个想法呢?带着这个问题一起进入我们今天的学习《三角形的三边关系》。
进行完导入之后,在我们启发诱导,探索新知的环节,首先我会拿出提前准备好的三根小棒,让同学们猜想这三个小棒能否形成三角形。在得到同学们肯定答案以后,我会将其中的一根小棒折断,取其中的一部分,继续引导同学们思考:在这样的条件下三根小棒是否能够拼凑成三角形。以此来引发同学们的兴趣,让他们猜想一下三边处于怎样的关系才能够形成三角形。
紧接着我会趁热打铁,让同学们亲自动手操作,用各种各样不同长短的小棒来拼凑三角形,然后小组合作记录数据,推出三角形形成的原因必须是两边之和大于第三边的原理。
紧接着在巩固部分,我会依据三角形的两边之和大于第三边这个定理给同学们出题,验证大家是否对于本节课关于三角形三边的关系问题掌握。在进行完巩固练习环节之后,我会让同学们回顾本堂课的内容,并留出课后作业,让大家测量生活当中三角形的长度。
最后我将进行我的板书设计。好的板书设计,能够培养学生思维的灵活性和发散性,也能够体现我的整体授课逻辑和层次,我将在黑板中央的正上方写上主题,下方写上大家实验得到的表格数据,以及关于三角形三边关系的论断,在右侧黑板的最下方写出我今天所留的作业。
以上就是我的说课过程,感谢各位考官。
三角形三边关系优秀教学设计 (菁选5篇)(扩展2)
——《三角形三边关系》说课稿3篇
《三角形三边关系》说课稿1
一、问好
尊敬的各位评委老师,大家下午好,我是今天的 5 号考生,我今天说课的题目是《三角形的三边关系》。
二、总括语
我将以教什么怎么教,以及为什么这么教为思路,具体从教材分析,学情分析,教法学法,教学过程以及板书设计五个方面加以说明。
三、教材分析
教材是进行教学的评判依据,是学生获取知识的重要来源,因此,我将分析教材放在首要位置。
本节课选自人教版小学数学四年级下册第五单元。本单元围绕三角形的相关性质展开,本课需要学生在对三角形基本定义和特征了解的基础上,掌握三角形三边关系即两边之和大于第三边的组成特征。本课内容于本章之中起着承上启下的作用。
四、教学目标
新课标要求教学目标是多元的,主要包括学会、会学、乐学三方面内容,基于此我将我
的教学目标也设立为以下三方面:
1.知识与技能目标:理解和掌握三角形的三边关系;这也是本堂课的重难点。
2.过程与方法目标:引导同学们将自主学习和合作探究的方法应用到猜想、验证以及总结的
过程当中去。
3.情感态度与价值观目标:通过对本课的学习,领悟数学的魅力,并愿意将我们学的理论知识应用在实践当中。
1. 直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2. 活动探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。
3. 集体讨论法:针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。
五、学情分析
在对教材有了基本了解的基础上,我们还应该对学生数学学习情况的基础有一个了解,小学四年级的学生正处于感性思维向理性思维转换的阶段,对于一些简单数学问题已经有了了解和掌握,只是对一些个深入的问题尚不能独立解决,他们好奇心强,好玩好动,听课过程中注意力不够集中,因此需要老师在教学过程当中有一个积极的引导。
六、教学教法
为了逐步实现教学目标,解决重难点问题,根据学生身心发展和数学学习的特点以及以学定教的原则,我将会采取讲授法,提问法,分析法进行授课。
正所谓授人以鱼,不如授人以渔,我将采取诱思深究,自主学习,合作探究,举一反三的方法相结合,提高同学们学习的积极性。
七、教学过程
以上所有的努力都是为了更科学合理的呈现我们的教学过程!为了让同学们真正做到学有所获,我将我的教学过程设计如下:
好的导入未成曲调,先有情,像磁石一样把学生牢牢的吸引住。因此我将采取情景创设的方式进行导入:同学们,我们一起看大屏幕,大屏幕上的地点大家熟不熟悉?哎,这里分别是咱们学校、建行和火车站,大家看,如果将这三个地点的路线连在一起的话会形成一个什么形状,对三角形。现在呀,老师想要从学校到建行取一些钱,走哪条路线会更近?哦,你是说直走?那现在老师在建行取完钱去火车站怎么走?你也说直走。那老师想问问大家,为什么大家会觉得在三角形的路线当中走其中一边会走另外两边花费更短的时间呢?大家大部分都是使用的生活知识得到的这个结论,那么有没有什么办法能够验证我们的这个想法呢?带着这个问题一起进入我们今天的学习《三角形的三边关系》。
进行完导入之后,在我们启发诱导,探索新知的环节,首先我会拿出提前准备好的三根小棒,让同学们猜想这三个小棒能否形成三角形。在得到同学们肯定答案以后,我会将其中的一根小棒折断,取其中的一部分,继续引导同学们思考:在这样的条件下三根小棒是否能够拼凑成三角形。以此来引发同学们的兴趣,让他们猜想一下三边处于怎样的关系才能够形成三角形。
紧接着我会趁热打铁,让同学们亲自动手操作,用各种各样不同长短的小棒来拼凑三角形,然后小组合作记录数据,推出三角形形成的原因必须是两边之和大于第三边的原理。
紧接着在巩固部分,我会依据三角形的两边之和大于第三边这个定理给同学们出题,验证大家是否对于本节课关于三角形三边的关系问题掌握。在进行完巩固练习环节之后,我会让同学们回顾本堂课的内容,并留出课后作业,让大家测量生活当中三角形的长度。
最后我将进行我的板书设计。好的板书设计,能够培养学生思维的灵活性和发散性,也能够体现我的整体授课逻辑和层次,我将在黑板中央的正上方写上主题,下方写上大家实验得到的表格数据,以及关于三角形三边关系的论断,在右侧黑板的最下方写出我今天所留的作业。
以上就是我的说课过程,感谢各位考官。
《三角形三边关系》说课稿2
一、说教材
通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。
根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。
(一)教学目标
1、通过创设问题情景、直观演示、观察比较,初步感知三角形边的关系。
2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。
3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
(二)教学重点
1、引导发现不能摆成三角形的原因,并探讨能摆成三角形的边的性质。
2、理解、掌握“三角形任意两边之和大于第三边”的性质。
(三)教学难点
引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。
二、学情分析
在正式学习三角形三边关系之前,学生在生活中已经了解了一些关于三角形三边关系的感性经验,这些经验构成了学生学习的认知基础。过程中,学生在抽象概括三角形三边之间的关系时,可能在数学语言的描述上会有一定的"困难,表达上也可能不够严密,但只要学生表达的意思对,教师就应该积极的给以肯定,同时教师要给学生更多探讨的空间和交流的机会,毕竟数学模型的建立和思维的发展需要经历一个渐近思辩的过程。
三、说教法和学法
在“活动参与、自主建构,联系生活、运用数学”的设计理念指导下,我的教学思路是:问题引领、动手操作、探究规律,并在解决生活实际问题中促进每一位学生获得不同的发展。
(一)创设问题情景,激发学生学习兴趣
我先给学生创设情景,引起悬念,让学生在动、观察、感知的基础上,激发学生学习数学的兴趣。
(二)动手操作、合作探究、自主建构数学规律
新课标强调要从学生已有的生活经验出发,在设计课程方案时,充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。让学生动起来,活起来,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
(三)联系生活,体会数学应用价值
现实生活中存在着大量的数学问题,学生学习数学已不仅仅局限于教材之内,而是扩大到了生活的每个角落。因此,我将有意识地引导学生从数学的角度,应用所学的知识“三角形任意两边的和大于第三边”去解决生活中实际问题,让学生学有价值的数学。通过解决生活中的问题,让学生感受到数学源于生活,更要服务于生活。
四、说教学程序设计
(一)创设情境,使学生对三角形三边关系的探索成为
一种需要。
(二)自主探究,经历、体验三角形三边关系的形成、发展过程。
(三)巧设练习,促进思维的发展,体验数学的意义和价值。
三角形三边关系优秀教学设计 (菁选5篇)(扩展3)
——《三角形三边关系》课后教学反思 (菁选3篇)
《三角形三边关系》课后教学反思1
《三角形三边关系》教学内容:“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。
特级教师吴正宪提出,要让学生享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合学生的美味?教学三角形三边关系,以前的我选择是给3根小棒让学生来探究。而这一次我选择了给他们一张普普通通的纸条,需要学生忽视其宽度,重视其长度,把它“想成”只有长度的线段。这就有了“数学化”的味道。变"学数学"为"做数学"。让学生在自主探索中总结得到三角形的三边关系。让学生能够接受学习内容,提高学习兴趣。使学生在课堂上乐于学数学、做数学、用数学。除此之外我还采用了创设实验情境——动手操作——合作探究——揭示规律——画图验证这种探究方法来完成本节课,目的是让学生体会理论和实践相结合才是严密的论证方法。
课堂及时捕捉学生思维的成果。当学生用纸条摆出结果后,我用手机照相功能把学生的作品保存下来,投放到课件之中,学生的学习兴趣一下高涨起来,把他们不同的成果进行展示,并且进行比较分析,得到了良好的效果。
巧设练习,促进思维的发展,体验数学的意义和价值。在练习中设计了几组线段,让学生判断能否围成三角形,分析这几组数据,得出只要比较较短的两条线段之和是否大于第三条边就可以判断能否围成三角形了。并根据这一发现解决四组线段能否围成三角形的问题。这一过程使学生巩固了基本的知识点,强化教学重点和难点,提高学生对组成三角形的规律的认识,掌握更好的判断方法——较小两条线段之和大于第三条线段,便可构成三角形。
《三角形三边关系》课后教学反思2
《三角形三边关系》这节课重难点非常的清楚,就是让学生明确在三角形中任意两边之和大于第三边,主要是让学生通过操作来探索。但是在这其中又有一个难点就是对于有两条边加起来和第三条一样长的情况该怎样去处理,在实际操作中有误差,这样就会让大部分学生会认为能围成三角形,对于这一点该怎样去处理确实让人头疼,经过研讨我们组老师建议尽量的减少教具的误差,之后加上课件的直观演示,可能会让学生能更好地理解,通过这一次的连片教研我更好地体会到这样做的原因了。
其次在教学过程中另一个让我们纠结的地方是到底是先研究能围成的两组,还是先研究不能围成的两组,经过讨论大家一致认为由学生的争议点2、6、8这一组不能围成的入手,但是到最后该怎样引导学生去自己探索三边之间的关系,在这一点上我做的有些生涩。经过这次的研讨,于华静老师给的建议让我顿时觉得开阔了很多,调整了研究的顺序让学生从简单入手,慢慢的深入研究,把主动性还给学生。这是我第一次以这样的形式参加连片教研,过程虽是难过,但是收获却是满满的!
《三角形三边关系》课后教学反思3
教育数学三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。通过本节课的教学,既让我感受到了成功的喜悦,同时也从课堂中暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学:
一、关注学生亲身经历
本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从5根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的`学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地就导入了新课,为后面的新课做了铺垫。二是新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
二、练习设计层层深入
本节课我设计了三个练习:
1、判断能否围成三角形。
2、小明从家到学校走哪条路最近?
3、寻找第三根小棒。
4、如何将一根铁丝截成三段,且能焊成三脚架?
评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水*,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。
但是从教学过程中我也反思了自己的不足之处。没有及时捕捉学生的智慧。学生在思考“能围成三角形三条边的关系”时,其中有一个学生说“我发现两条短边的和比另外一条边长时,就能围成三角形。”当时由于我考虑到为后面的“任意”二字做铺垫,并没有对学生的这个答案做过多的评价。其实这是判断三角形三条边的关系时一种最优化的方法。在教学中,我们不能束缚在教材的条条框框中,而忽视了班上少部分同学的灵感和智慧。在课堂中,如果我能及时捕捉这一信息,并因势利导,我相信本节课,不仅能找出三角形三条边的关系,还能找出能否三角形的三条线段的最优化方法,一定会为本节课增色不少。
三角形三边关系优秀教学设计 (菁选5篇)(扩展4)
——三角形的面积教学设计10篇
三角形的面积教学设计1
教学内容:三角形的面积第84-85页
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
在转化中发现内在联系及推导说理。
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个*行四边形。红领巾等。
教学过程
一、复习导入:
1、复习:想一想,*行四边形的面积怎样计算?这个公式是怎么推导出来的?
指名说一说,师可再现推导过程。
2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。
二、探究三角形的面积公式
1.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
2.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行四边形的面积有什么关系?
3.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、*移)
教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系?
4.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
5.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的*行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
6、引导学生明确:
①两个完全一样的三角形都可以拼成一个*行四边形。
②每个三角形的面积等于拼成的*行四边形面积的一半。(同时板书)
③这个*行四边形的底等于三角形的底。(同时板书)
④这个*行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
7.教学例1
红领巾的底是100cm,高33cm,它的面积是多少*方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、总结:
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?
四、反馈练习
计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
(三)判断
一个三角形的底和高是4厘米,它的面积就是16*方厘米。()
2、等底等高的两个三角形,面积一定相等。()
3、两个三角形一定可以拼成一个*行四边形。()
4、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。()
板书设计
三角形的面积
*行四边形的面积=底×高,
三角形面积=拼成的*行四边形的一半,100×33÷2=1650(cm)
三角形面积=底×高÷2
S=ah÷2
三角形的面积教学设计2
教材分析
本节内容是在学生充分认识了三角形的特征以及掌握了长方形、*行四边形面积计算的基础上安排的。其推导方法与*行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。
学情分析
学生在掌握了正方形和长方形面积的基础之上才能学好本课,让学生动手操作去探索数学的奥秘。
教学目标
知识与技能目标:使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。
过程与方法目标:使学生通过操作和对图形的观察、比较、发展空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
情感态度与价值观:在探索学习过程中,培养学生的实践能力、探索意识、合作精神与创新精神;同时使他们获得积极、成功的情感体验。
教学重点和难点
1、掌握三角形面积的计算公式,会运用公式计算三角形的面积。
2、理解三角形面积计算公式的推导方法。
教学过程
一、创设情境,导入新课
1、同学们,上一节课我们学习了*行四边形面积的计算你还能记住求*行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?
2、同学们,请大家自己看看胸前的红领巾,知道红领巾是什么形状的吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)。要想知道这条红领巾的.面积时多少,就要用到三角形的面积公式,今天这节课我们就来研究三角形面积的计算方法。
板书:三角形的面积
二、讲授新课
1、上节课,我们在研究*行四边形的面积公式时,是把*行四边形转化成我们学过的方法形或正方形来研究的。今天,我们能不能将三角形也转化成我们已经学过的图形,从而推导出三角形的面积公式呢?
2、提问:请同学们回想一下,三角形按角分类可以分为几类?分别是?
(锐角三角形、直角三角形、钝角三角形)
3、我为大家准备了这些三角形,请你们自己试图去拼一拼,看你能发现什么?
4、拼图推导公式,按三角形类别的不同,可以有以下几种方法
⑴、两个完全一样的锐角三角形
提问:两个完全一样的锐角三角形能拼成了什么图形?你发现了什么?
两个完全一样的锐角三角形拼成一个*行四边形,*行四边形的底相当于三角形的底,*行四边形的高相当于三角形的高,*行四边形的面积相当于三角形面积的2倍,因为*行四边形的面积等于底乘以高,所以三角形的面积等于底乘以高除以2。
老师把图形贴在黑板上,再请说推导过程,并板书:
*行四边形的面积=底×高
三角形的面积=底×高÷2
⑵、两个完全一样的钝角三角形
两个完全一样的钝角三角形拼成一个*行四边形
⑶、两个完全一样的直角三角形
两个完全一样的直角三角形拼成一个长方形。
5、小结:我们用两个完全一样的三角形,拼成了*行四边形或长方形,利用*行四边形或长方形的面积公式,推导出了三角形的面积公式。如果用字母a表示三角形的底,h表示三角形的高,s表示三角形的面积,你能用字母表示出三角形的面积公式吗?
板书:s=ah÷2
三、巩固练习
5、练习:出示教材第85页的例2,请学生独立完成,指明板演。
6、学生独立完成教材第85页的“做一做”及第86页的练习十六的第1、2题。
四、课堂小结
提问:这节课我们探索了那些知识?学到了些什么?
这节课我们主要通过用两个完全一样的三角形,拼成了*行四边形或长方形,利用*行四边形或长方形的面积公式,推导出了三角形的面积公式。从而得到三角形的面积等于底乘以高除以2。这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
五、思维拓展
教材第87页第6题。
六、布置作业
教材第87页第3题。
三角形的面积教学设计3
教学目标:
1.知识与技能:
(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
三角形面积公式的推导过程。
教学关键:
让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备:
红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:
每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)
教师提出问题:
⑴红领巾是什么形状的?(三角形)。
⑵你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。
板书:三角形的面积
[设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]
二、探索新知
1.寻找思路:(出示一个长方形)
师:(1)长方形面积怎样计算?
(2)怎样可以把这个长方形*均分成两份?
有三种方法:
方法一:方法二: 方法三:
师:方法三中把长方形*均分成两个三角形,大小有什么关系?(完全一样)
每个三角形面积与原长方形的面积有什么关系?
[设计意图:通过把长方形*均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]
生:长方形的面积=长×宽
生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。
板书:三角形的面积=底×高÷2(直角三角形)
师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把*行四边形转化成长方形来探索*行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)
接着出示思考题:
(1)将三角形转化成学过的什么图形?
(2)每个三角形与转化后的图形有什么关系?
[设计意图:学生已经学习了*行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形*分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]
2.分组操作、讨论,合作学习。
三角形的面积教学设计4
教学内容:
人教版义务教育课程标准实验教科书五年级上册第84—86页.
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题.
(2)培养学生应用已有知识解决新问题的能力.
2.过程与方法:使学生经历操作,观察,讨论,归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力.
3.情感,态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣.
教学重点:
探索并掌握三角形面积计算公式,能正确计算三角形的面积.
教学难点:
三角形面积公式的探索过程.
教学关键:
让学生经历操作,合作交流,归纳发现和抽象公式的过程.
教具准备:
课件,*行四边形纸片,两个完全一样的三角形各三组,剪刀等.
学具准备:
每个小组至少准备完全一样的直角三角形,锐角三角形,钝角三角形各两个,一个*行四边形,剪刀.
教学过程:
创设情境,揭示课题
师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题
(屏幕出示红领巾图)
师:同学们,红领巾是什么形状的(三角形)你会算三角形的面积吗这节课我们一起研究,探索这个问题.(板书:三角形面积的计算)
[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将"教"的目标转化为学生"学"的目标.]
二,探索交流,归纳新知
1.寻找思路:(出示一个*行四边形)
师:(1)*行四边形面积怎样计算(板书:*行四边形面积=底×高)
(2)观察:沿*行四边形对角线剪开成两个三角形.
师:两个三角形的形状,大小有什么关系(完全一样)
三角形面积与原*行四边形的面积有什么关系
[设计意图:这一剪多问,学生在观察的基础上通过与*行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]
师:你想用什么办法探索三角形面积的计算方法
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定,评价鼓励.)
师:上节课,我们把*行四边形转化成长方形来探索*行四边形面积的计算公式的.大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢
(屏幕出示课本84页主题图让学生观察,引发思考)
接着出示思考题:
将三角形转化成学过的什么图形
每个三角形与转化后的图形有什么关系
[设计意图:学生由于有*行四边形面积公式的推导经验,必然会产生:能不能把三角形也转化成已学过的图形来求它的面积呢从而让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫.]
2.分组实验,合作学习(音乐)
(1)提出操作和探究要求.
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼,摆一摆或剪拼.
屏幕出示讨论提纲:
①用两个完全一样的三角形摆拼,能拼出什么图形
②拼出的图形与原来三角形有什么联系
(2)学生以小组为单位进行操作和讨论.
[设计意图:这里,根据学生"学"的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会.]
教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的能说一说你的拼法吗(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转,移动,和下一个三角形拼成一个*行四边形.如图,让学困生模仿练习)
三角形的面积教学设计5
教学目标:
1 .知识与技能:
(1 )探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2 )培养学生应用已有知识解决新问题的能力。
2 .过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3 .情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点: 探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点: 三角形面积公式的推导过程。
教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。
教具准备: 红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。
教学过程:
一、创设情境,揭示课题
师:今天老师有什么不同? 老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)
教师提出问题:
⑴ 红领巾是什么形状的?(三角形)。
⑵ 你会算三角形的面积吗?
师:这节课我们一起来学习探索三角形面积的计算方法。板书:三角形的面积
[ 设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“ 教学活动” 转化为“ 学习活动” 。]
3 .讨论与归纳公式
(1 )讨论:(小黑板出示问题)
①三角形的底和高与*行四边形的底和高有什么关系?
②怎样求三角形的面积?
③你能归纳出三角形的面积计算公式吗?
[ 设计意图: 借助图形直观性,教师指明讨论的部分是三角形的底和高与*行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]
二、应用新知,解决问题
师:现在同学们能帮老师解决问题了吗?
1 .计算一条红领巾的面积。
师:你能估算出这条红领巾的底和高各是多少吗?
师:这条红领巾的底是100cm, 高是33cm ,你能计算出它的面积是多少吗?
学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。
师:计算三角形的面积,应注意什么地方?(强调“÷2” 和“ 底和高要对应” 这两个重点、难点。)
2 .独立完成P85 做一做。
学生板演,教师点评。
[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]
三、深化理解、应用拓展
课本86 页的练习第1 题。(课件出示)
师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少*方分米?
(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)
[ 设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]
四、总结
师:今天这节课,我们主要学习了什么知识?你有什么收获?
(小出示)让学生说一说图意:
师:很好!今天我们通过分“ 四人小组” 动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的*行四边形推导出了三角形面积的计算公式,这种“ 转化” 的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。
[ 设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]
五、课外作业
课本第87 页“ 练习十六” 第5 、6 、7 题。
教学反思:
本节内容是在*行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “ 教学活动” 转化为“ 学习活动”, 引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。
1、小组结合动手操作
在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个*行四边形,并比较每个三角形与拼成的*行四边形各部分间的关系,同时在操作中向学生渗透旋转、*移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
2、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨*行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“ 除以2” 是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“ 除以2” 的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。
3、应用公式解决生活中的问题
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了自己*时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识, 从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。
三角形的面积教学设计6
教学内容:三角形面积计算的练习(练习十八5~10题)
教学要求:
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
教学重点:运用所学知识,正确解答有关三角形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1.填空。
(1)三角形的面积=,用字母表示是。
为什么公式中有一个“÷2”?
(2)一个三角形与一个*行四边形等底等高,*行四边形的底是2.8米,高是1.5米。三角形的面积是()*方米,*行四边形的面积是()*方米。
2、练习十六2题
二、指导练习
1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相*行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习十六第7题
(1)让学生尝试分。
(2)展示学生的作业
可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
让学生抓住涂色的三角形的底只有*行四边形底的一半,它的高和*行四边形的高相等,*行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4
4.练习十六第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了*行四边形的面积。
三、课堂练习
练习十六第8*题。
四、作业
练习十六第4、5题。
课后记:
三角形的面积教学设计7
教学内容:
人教版义务教育课程标准实验教科书五年级上册第84—86页。
教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,*行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了*行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、
教学目标:
1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:
三角形面积公式的探索过程。
教具准备:
课件、*行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:
每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个*行四边形,剪刀。
教学过程
一、复习旧知,导入新课。
1、我们学过求哪些图形的面积,计算公式是什么?
2、我们学校内有一*行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛*均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。
3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?
师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。
二、动手操作,探求新知。
1、 猜一猜。找关系
师:1、同学们,长方形的面积跟它的什么有关系?*行四边形的面积跟它的什么有关系?
生:和它的底和高有关。
2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?
2、 想一想。找关系
师:想一想,我们在推导*行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?
3、 拼一拼,摆一摆,比一比。找关系
师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。
学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。
汇报。可能摆出正方形,长方形,*行四边形,
思考,这些图形有什么共同点?(都是*行四边形。)现在,你又有什么发现?
归纳:两个完全相同的三角形,可以拼出一个*行四边形。
师:那么,我们拼出的*行四边形、跟所用的三角形有没有关系呢?有什么关系呢?
引导学生答出,*行四边形的面积是三角形面积的2倍。板书:三角形的面积=*行四边形的面积÷2,那么,还有没有其它的关系呢?
4、 画一画,算一算。找关系,得结论。
师:请同学们画出*行四边形的一条高,你发现了什么?
生:*行四边形的高也是三角形的高,底也是三角形的底。
师:那么,我们刚刚得出的结论还可以怎样写?
三角形的面积=底×高÷2
用字母表示三角形的面积。
5、 应用公式,解决问题。
现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。
教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?
学生独立计算,集体订正。
三、练习巩固。
1、 独立完成85页做一做。
2、 完成86页练习的1、题。
3、 完成86页练习的3题。
4、判断下列说法是否正确。
(1)三角形面积是*行四边形面积的一半。( )
(2)一个三角形面积为20*方米,与它等底等高*行四边形面积是40*方米。( )
(3)一个三角形的底和高是4厘米,它的面积就是16*方厘米。( )
(4)等底等高的两个三角形,面积一定相等。( )
(5)两个三角形一定可以拼成一个*行四边形。( )
5、求右图三角形面积的正确算式是( )
①3×2÷2 ②6×2÷2
③6×3÷2 ④6×4÷2
6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。
四、拓展提高:
1、这节课,你有什么收获?还有那些不懂的地方?
2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?
五、板书设计:
三角形的面积
三角形的面积=*行四边形的面积÷2
三角形的面积=底×高÷2
S=ah÷2
三角形的面积教学设计8
教材简析:
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的*行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
教学内容:
苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。
教学目标:
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重、难点:
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
教、学具准备:
CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:
一、创设情境、导入新课
1、提出问题。
师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)
二、操作“转化”,推导公式
1、寻找思路。
师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算*行四边形的面积,后来我们通过什么方法推导出了*行四边形的面积计算公式的呢?
师:对,我们用“割补”的方法把*行四边形“转化”(板书:转化)成了一个长方形,这样推导出了*行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、*移等方法,把两个完全一样的三角形拼成一个*行四边形或一个长方形。]
师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]
师:同学们,为什么有些小组拼成了一个*行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个*行四边形或一个长方形。现在请同学们看图1。
师:这个*行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?
[评析:引导学生说出拼成的*行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]
师:知道了*行四边形的底和高,你们能求出所拼成的*行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个*行四边形是用两个完全一样的三角形拼成的,*行四边形的面积是20*方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和*行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的*行四边形面积的一半,计算三角形的面积可用*行四边形的面积除以2得出。]
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
[应变预设:学生可能不会计算,教师可以引导学生观察,图中的虚线三角形,和蓝色三角形是完全一样的,它们也拼成了一个*行四边形。使学生明确3×2是这个*行四边形的面积,求这个三角形的面积还得除以2。]
师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形(底6cm,高4cm)的面积吗?
[评析:由清晰的由两个完全相同的三角形拼成的*行四边形,到由一实一虚的两个完全相同的三角形拼成的*行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
[应变预设:大多数的学生可能会说出“三角形的面积=底×高÷2”。教师应给以充分的肯定:你们推导出了三角形面积的计算公式!再引导学生说出推导的过程。]
5、理解公式。
师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?
[评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的*行四边形的面积;因为三角形的面积是拼成*行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了
学生对三角形面积计算公式的理解。]
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
[评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]
三、应用公式,解决问题
师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?
师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?
师:那就请大家动手量一量它的底和高吧。
[评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]
四、联系生活,适当拓展
师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的具体含义吗?
师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?
师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌(底9dm,高7dm)的面积大约是多少?
[应变预设:指导运用公式进行正确的计算,,然后集体订正。]
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1.5厘米;图3:底2.5厘米,高2.8厘米)看谁算得又对又快!
四、全课总结,反思体验
教师:这节课你们学习了什么?有哪些收获?
[总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]
三角形的面积教学设计9
教学内容:三角形的面积第84-85页
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
在转化中发现内在联系及推导说理。
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个*行四边形。红领巾等。
教学过程
复习导入:
1、复习:想一想,*行四边形的面积怎样计算?这个公式是怎么推导出来的?
指名说一说,师可再现推导过程。
2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。
二、探究三角形的面积公式.
1.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
2.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行 四边形的面积有什么关系?
3.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、*移)
教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系?
4.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
5.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的*行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
6、引导学生明确:
①两个完全一样的三角形都可以拼成一个*行四边形。
②每个三角形的面积等于拼成的*行四边形面积的一半。(同时板书)
③这个*行四边形的底等于三角形的底。(同时板书)
④这个*行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
7.教学例1
红领巾的底是100cm,高33cm,它的面积是多少*方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、总结:
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?
四、反馈练习
计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
(三) 判断
一个三角形的底和高是4厘米,它的面积就是16*方厘米。( )
2、等底等高的两个三角形,面积一定相等。 ( )
3、两个三角形一定可以拼成一个*行四边形。 ( )
4、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。( )
板书设计
三角形的面积
*行四边形的面积=底×高,
三角形面积=拼成的*行四边形的一半, 100×33÷2=1650(cm)
三角形面积=底×高÷2
S=ah÷2
三角形的面积教学设计10
教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点:三角形面积计算公式的推导过程
教学难点:在转化中发现内在联系及推导说理。
教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。
设计思路:
本节课有以下几个特点:
1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。
2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。
教学过程
一、创境引新
1、同学们,你们还记得怎样计算*行四边形的面积吗?(点击课件)
这个公式是怎样推导出来的呢?
电脑动态演示割拼的转化过程。
形成板书:
转化 找关系 推导
学生看大屏幕,
口答:s=ah
学生口述*行四边形面积公式的推导过程。
2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?
三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)
生可能会说:求出它的面积。
二、自主探索
合作交流1、谈话启思。
我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?
2、操作探索。
(1)四人小组合作进行操作、探索。
(2)小组汇报、交流、展示。
学生可能会拼出以下图形:
(3)课件演示拼出的各种图形。
(4)设疑:
这些图形中哪些图形的面积你会计算?
通过操作,谁能告诉老师,什么样的两个三角形能拼成*行四边形?
你能不能很快的把两个完全相同的三角形拼成*行四边形。
老师有一种方法,能很快的将两个完全相同的三角形拼成*行四边形,想学吗?
电脑演示转化的动态过程。
(5)找关系。
师:拼成的*行四边形与原三角形有什么关系?
课件出示:
a.拼得的*行四边形的底与原三角形的底有什么关系?
b.拼得的*行四边形的高与原三角形的高有什么关系?
c.其中一个三角形的面积与拼得的*行四边形的面积有什么关系?
(6)汇报
在学生回答的基础上师用电脑演示。
(7)尝试推导说理。
师:根据你们的发现,你能推导出三角形的面积计算公式吗?
在学生的汇报中形成板书:
三角形的面积=*行四边形的面积÷2
底 × 高
= 底× 高÷2
师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?
完善板书:s=ah÷2
学生口答:长方形、*行四边形。
生:两个完全一样的三角形能拼成*行四边形。
学生操作,感到不是很容易。
学生观看转化过程。
尝试旋转、*移的方法。
小组讨论交流。
小组派代表发言。
学生讨论后回答,并说说自己是怎样推导的?
学生发言。
学生齐说:s=ah÷2
3、探究用一个三角形进行割补转化推导。
师:我们在推导*行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成*行四边形?
师:下面我们来观察电脑上是怎样操作的?(点击课件)
师:同学们若有兴趣,课后可以继续探索不同的割补方法。
小组合作探究,
汇报交流。
学生观看运用割补法将一个三角形转化成*行四边形过程。
三、实践应用
拓展提高
1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?
你能估计一下它的底有多长吗?(课件出示红领巾)
一条红领巾的面积是多少*方厘米?
2、看图计算面积。
3、你认识这些道路交通标志吗?谁来说说。
(课件出示)
师:我们学校处在交通繁忙的三路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)
你来帮他们算算需要多少铁皮?
4、判断。
(1)、一个三角形的底和高是4厘米,它的面积就是16*方厘米。()
(2)、等底等高的两个三角形,面积一定相等。()
(3)、两个三角形一定可以拼成一个*行四边形。()
(4)、三角形的底是3分米,高是20厘米,它的面积是30*方厘米。()
5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。
学生估计底的长度。
学生独立完成,一人板演。做完后集体订正。
学生口述列式。
通过图3知道要用对应的底和高计算面积。
学生说说自己认识交通标志。
学生独立完成,然后交流。可能出现下面两种方法。
方法一:s=ah÷2
=7.8×9÷2
=35.1
35.1×2=70.2(*方分米)
方法二:s=ah
=7.8×9
=70.2(*方分米)
学生判断,并说明理由。
四、评价体验
通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)
学生之间互相评价。
教学反思:
1、利用远程教育资源,创设教学情景。
利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、*行四边形面积计算的基础上学习的,其推导方法与*行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关*行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。
2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。
数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成*行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、*移,能很快的拼成一个*行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、*移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的*行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。
割补法是学习几何知识很重要的方法。在推导*行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、*移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成*行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水*有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。
3、利用远程教育资源,提高学生应用新知识的能力。
练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。
总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。
三角形三边关系优秀教学设计 (菁选5篇)(扩展5)
——《三角形边的关系》教学反思10篇
《三角形边的关系》教学反思1
本节课是在认识了三角形的“分类”和“内角和”的基础上进行教学的,学生已有一定的探索和合作意识,因此我主要采用探索式与多媒体辅助教学,以下是我从设计思路、实施过程、教后反馈三个环节中的反思:
一、反思设计思路
课堂是学生交流知识、获得能力,体验情感的摇篮。一堂课的亮点:“应是从学生思维的起点,兴趣的契入点开始,让学生一气呵成,从而学会学习。因此本堂课的设计主要是从学生的角度出发,结合教材,结合目标和教学重难点,我确定了本节课的思路为:创设情景——激发学习欲望——创设实验——鼓励学生动手、观察、猜想——小组合作交流——鼓励学生大胆发表自己的想法——推广验证,得出结论——分层练习、巩固新知——应用新知、解决问题。
二、反思实施过程:
本节的教学主线是:是不是任意三根小棒都能围成三角形?我围绕着这一主线引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的可以围成三角形,而有的围不成。接着让学生探究在什么情况时不能为成三角形,为什么?初步让学生感知三角形三条边之间的关系。然后重点研究“能围成三角形的三条边之间到底有什么关系?”,让学生从直观观察得出“较短的两条边的和大于最长的那边”,经过讨论验证后得出“三角形任意两边的和大于第三边”这一结论。
本节课的教学过程,既符合学生的认知特点,又使学生始终满怀兴趣,而且还积累了大量的操作经验取得了比较满意的教学效果。整个教学过程的设计中,我注重了如下几点:
1、巧设情境,以疑激思。在教学过程中创设问题的情境,可有意造成学生认知矛盾,激发学生主动探究新知的兴趣,想办法解决问题,并能体会到成功的乐趣。因此,在引入方面,我先创设了生活情境——哪条路上学最近?通过课件演示再提出问题:为什么最近?是不是任意三条线段都能围成三角形呢?设置这样的悬念,引起学生积极思考,让学生对三角形三边关系产生好奇,引发学生的探究欲望,从而积极去探索解决问题的方法,学习起来乐此不疲。这节课由实际问题引入,并始终由问题去引领整个探索实践过程。
2、以动促思,多种感官参与学习活动。动手操作过程是以动促思,是多种感官参与学习活动的重要途径,是知识学习的一种循序渐进的探究过程。我为每个学习小组提供了不同长度的小棒、统计表,让学生猜一猜、摆一摆、填一填、说一说、想一想,多种感官参与学习活动,在活动中逐步发现并归纳“三边关系”。
3、情境演示,动静结合。本节的知识点比较抽象,学生难以理解。而在动手操作时,容易产生误差,难以让学生信服。我们知道,数学知识是抽象的,又是具体的;是静止的,但又是动态的。因此,本节我还利用了信息技术把知识的具体与抽象,静态与动态有机的呈现出来突破难点,突出重点。正如课前所料,因为小棒和误差的缘故,有些学生认为“4、5、9”这组小棒能围成三角形,于是我结合课件演示,让全体学生动态地看出三角形两边长度的和等于第三边的结果是什么—— 必定不能围成三角形。
4、联系生活。数学知识源于生活而最终服务于生活。在教学中要力求从学生熟悉的生活世界出发,选择学生身边的的事物,提出有关的数学问题,以激发学生的兴趣与动机。使学生初步感受数学与日常生活的密切联系,并能学以致用。例如:从引入“哪条路上学最近”,到练习中“盖三角形房架”等设计,都是从生活经验和客观事实出发,使学生感受生活中处处有数学,让学生在解决实际问题中享受“学数学、用数学”的乐趣。
三、反思课堂练习
课堂练习的目的是为了让学生及时掌握知识,因此我设计了一些不同类型、不同层次的练习,让不同层次的学生都能得到发展。
从反馈中发现学生犯错的原因一是:学生未能认真审题。比如:从下面5根小棒中任意取出3根,摆出两种不同的三角形。(教材第31页“练一练”第二题)有不少同*用分类讨论做题,却把五根小棒看成了五类小棒,实在可惜。犯错的原因二是:学生动手实验的能力不强。因此整节课时间稍紧了一点。
《三角形边的关系》教学反思2
《三角形三边的关系》是四年级下册内容,是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。学生都知道三角形是由三条线段围成,但是对于“任意的三条线段不一定都能围成三角形”这一知识却似懂非懂。另外,“三角形任意两边的和大于第三边”的结论,对于学生来说理解并不是非常困难,此内容的教学价值更多的在于过程和方法。因此,在教学中应尽量地为学生提供探索的空间,引导学生围绕问题主动地进行观察、实验、猜测、验证、推理等数学探究活动,让学生自主地“做”和“悟”,从而得出结论。再次,学生的操作材料(吸管和小棒)都有一定的粗细,在实践操作时难免产生误差,此时,可恰当地运用多媒体动态演示,能有效地突破教学难点。
本节课的教学,我认为重点在于探究的过程与方法。通过动手用三根吸管围三角形(有的能围成,有的围不成),引导学生进行观察、实验、猜测、验证等数学探究活动,初步感悟到:“当任意两边的和大于第三边时,能围成三角形”的规律。本节课,我设计了一连串的问题:“为什么这三根吸管围不成三角形?”、“怎样的三根吸管能围成三角形?”、“第三根小棒的长度应在哪个取值范围内?”引导学生发表自己的观点,并对他人的观点发表自己的意见,进行质疑。这样,学生能通过一个个问题的解决深化对知识的理解,完善结论,使学生的思维得到提升,认知产生飞跃。最后通过发挥多媒体教学的优势,最大限度地提高教学效果。三角形边的关系比较抽象,而且在动手操作时,很容易产生误差。课件应用,能动态呈现出来,为突破本节课的难点起到了至关重要的作用。例如:在验证“当较短的两根小棒长度之和等于第三根”能否围成三角形的猜想时,学生意见不一,因为小棒是圆形的有一定的粗细,所以在围三角形时很容易产生误差,误导学生。利用课件引导学生明白当较短的两根小棒的端点搭在一起时,就与第三条线段完全重合了,围不成三角形,直观形象地突破了难点。
《三角形边的关系》教学反思3
《三角形边的关系》是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形边的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。开课前我先观摩网上优秀视频,学习优秀案例,用两天的时间准备教案,在备课的过程中,我一直在思考,到底该如何引导三角形任意两边之和大于第三边 。因此,教学中,我让学生亲身经历了探究的过程,围绕怎样的三根小棒能摆成一个三角形?这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究能围成三角形的三条边之间到底有什么关系?虽然本节课能达到预期的效果,但在实验活动中,存在着许多问题。因此,我对这节课做了如下的反思:
一、关注学生亲身经历
本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分,通过联系生活,激发兴趣。出示一组实物图片,使学生初步体验三角形在生活中的广泛应用,激发学生的学习热情,调动学生学习的积极性。二是动手操作部分,学生用手中的小棒来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。这个实验活动过程中也存在着很多的不足,例如:让学生到展示台展示准备得不够充分,只是简单的叫几位学生去展示,没有走到学生中去了解实验结果,感觉只是停留在表面。怎样的三根小棒才能围成一个三角形呢,学生实验后,我只是出示一个例子就下结论,评课后, 通过 老师的点评,让我明白了,一个实验活动要有两到三个例子,才能下结论。
二、练习设计层层深入
评价一节数学课,最直接有效的方式就是通过练习得到的反馈,而学生之间参差不齐,为了能兼顾全班学生的整体水*,练习题我设计层层深入,由浅入深。1.判断三组小棒能否围成三角形。2.用同样长的3根、4根、5根、6根小棒能不能摆成一个三角形?第1小题我要求学生除了判断能不能摆成三角形?还要求学生们写出为什么能围成一个三角形,为什么不能围成一个三角形的理由。从学生的反应,可以看出正确率很高,让我惊讶的是,他们理由说的很棒,只要比较两根较短的小棒是否大于那根长的小棒就能知道是否能围成一个三角形。有的学生用算式表示(如:3+4>6 )等,学生们能懂得把所学的知识转化为自己的能力来解决问题。第2个小题,我让学生们通过动手操作、猜想、实验、验证及同桌互相讨论等活动,来解答用3根同样长的小棒能不能摆成一个三角形,若能摆成,它是一个什么样的三角形。学生都摆出了一个等边三角形出来。接下来再分别动手操作4根、5根、6根同样长的小棒是否能摆成一个三角形。若能摆成,它是一个什么样的三角形。通过这个练习,培养了学生的自主探索、勇于实践、敢于发现问题,从而在动手能力与同伴交流的过程中得出结论的好品质。
《三角形边的关系》教学反思4
在教学《三角形三边之间的关系》一课时,学生在任选长短不一的小棒围三角形的时候发现并不是任意三根小棒都可以围成三角形,这是为什么呢?引出课题。出示书里的情境,从邮局到杏云村,走哪条路最近?为什么?是不是所有的两边之和都大于第三边呢?学生通过画三角形、摆三角形验证三角形任意两边之和大于第三边的结论。这样学生容易掌握。荷兰数学教育家弗赖登塔尔认为,学习数学唯一正确的方法是让学生进行“再创造”,教师的任务是引导,帮助(包括设计合适的活动或作业)学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。本课教学设计,我力求突破传统的教学模式,在学生获取知识的过程中,大胆放手,鼓励学生参与数学实验,探索和发现数学规律,培养学生探索精神和科学态度,取得了较好的教学效果。
1、让学生成为数学学习的主人。
本节课通过动手操作,充分激发学生的学习兴趣,让学生逐步完成知识的学习建构,真正成为学习的主人。一开始,我设计了让学生动手搭建三角形的活动,在操作活动的基础上,学生进行反思(为什么①和②不能围成三角形?),发现并猜想到:三角形任意两边长度之和大于第三边。接着,我组织学生通过在小组内画一画,量一量,比一比等活动,验证了三角形任意两边的和大于第三边。活动培养了学生从个别到一般的归纳思维。整节课,学生学习热情高,积极参与,课堂学习氛围浓厚。
2、发挥教师在教学活动中的主导者,调控者的作用。
教师作为教学活动的主导者、调控者,应有意留足时空,抓住重点字词引导学生在“无疑中生疑”,把问题发现的机会提供给学生,培养学生的发现意识,进而通过在“活跃”的实践操作中进行“冷静”反思,相互讨论,举例验证等方式主动释疑。本节课设计了两个关键问题:一个是,为什么①和②不能围成三角形;另一个,针对“任意”含义的理解提出的,同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!通过两个问题的思考,学生对“三角形任意两边的和大于第三边”有了更深刻的理解。
3、采用小组合作学习,引导学生自主合作、探究研讨,注重培养学生协作意识。
本节课,我两次采用了小组合作学习,第一次是在学生动手搭建三角形的活动时候,第二次是在验证猜想的活动时候。两次小组合作学习,我都提出了具体的活动要求,组织学生分工明确,并且第一次的活动要求比第二次更具体更细化。小组活动让每一个学生都有机会参与,充分享有发言权,并能及时发现自己思维过程中的疑结,修正了自己的不足,同时学会了合作,学会了从他人智慧中获得启迪。我崇尚这种学习方式。
《三角形边的关系》教学反思5
本节课是在认识了三角形的“分类”和“内角和”的基础上进行教学的,学生已有一定的探索和合作意识,因此我主要采用探索式与多媒体辅助教学,以下是我从设计思路、实施过程、教后反馈三个环节中的反思:
一、反思设计思路
课堂是学生交流知识、获得能力,体验情感的摇篮。一堂课的亮点:“应是从学生思维的起点,兴趣的契入点开始,让学生一气呵成,从而学会学习。因此本堂课的设计主要是从学生的角度出发,结合教材,结合目标和教学重难点,我确定了本节课的思路为:创设情景——激发学习欲望——创设实验——鼓励学生动手、观察、猜想——小组合作交流——鼓励学生大胆发表自己的想法——推广验证,得出结论——分层练习、巩固新知——应用新知、解决问题。
二、反思实施过程:
本节的教学主线是:是不是任意三根小棒都能围成三角形?我围绕着这一主线引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的可以围成三角形,而有的围不成。接着让学生探究在什么情况时不能为成三角形,为什么?初步让学生感知三角形三条边之间的关系。然后重点研究“能围成三角形的三条边之间到底有什么关系?”,让学生从直观观察得出“较短的两条边的和大于最长的那边”,经过讨论验证后得出“三角形任意两边的和大于第三边”这一结论。
本节课的教学过程,既符合学生的认知特点,又使学生始终满怀兴趣,而且还积累了大量的操作经验取得了比较满意的教学效果。整个教学过程的设计中,我注重了如下几点:
1、巧设情境,以疑激思。在教学过程中创设问题的情境,可有意造成学生认知矛盾,激发学生主动探究新知的兴趣,想办法解决问题,并能体会到成功的乐趣。因此,在引入方面,我先创设了生活情境——哪条路上学最近?通过课件演示再提出问题:为什么最近?是不是任意三条线段都能围成三角形呢?设置这样的悬念,引起学生积极思考,让学生对三角形三边关系产生好奇,引发学生的探究欲望,从而积极去探索解决问题的方法,学习起来乐此不疲。这节课由实际问题引入,并始终由问题去引领整个探索实践过程。
2、以动促思,多种感官参与学习活动。动手操作过程是以动促思,是多种感官参与学习活动的重要途径,是知识学习的一种循序渐进的探究过程。我为每个学习小组提供了不同长度的小棒、统计表,让学生猜一猜、摆一摆、填一填、说一说、想一想,多种感官参与学习活动,在活动中逐步发现并归纳“三边关系”。
3、情境演示,动静结合。本节的知识点比较抽象,学生难以理解。而在动手操作时,容易产生误差,难以让学生信服。我们知道,数学知识是抽象的,又是具体的;是静止的,但又是动态的。因此,本节我还利用了信息技术把知识的具体与抽象,静态与动态有机的呈现出来突破难点,突出重点。正如课前所料,因为小棒和误差的缘故,有些学生认为“4、5、9”这组小棒能围成三角形,于是我结合课件演示,让全体学生动态地看出三角形两边长度的和等于第三边的结果是什么——必定不能围成三角形。
4、联系生活。数学知识源于生活而最终服务于生活。在教学中要力求从学生熟悉的生活世界出发,选择学生身边的的事物,提出有关的数学问题,以激发学生的兴趣与动机。使学生初步感受数学与日常生活的密切联系,并能学以致用。例如:从引入“哪条路上学最近”,到练习中“盖三角形房架”等设计,都是从生活经验和客观事实出发,使学生感受生活中处处有数学,让学生在解决实际问题中享受“学数学、用数学”的乐趣。
三、反思课堂练习
课堂练习的目的是为了让学生及时掌握知识,因此我设计了一些不同类型、不同层次的练习,让不同层次的学生都能得到发展。
从反馈中发现学生犯错的原因一是:学生未能认真审题。比如:从下面5根小棒中任意取出3根,摆出两种不同的三角形。(教材第31页“练一练”第二题)有不少同*用分类讨论做题,却把五根小棒看成了五类小棒,实在可惜。犯错的原因二是:学生动手实验的能力不强。因此整节课时间稍紧了一点。
《三角形边的关系》教学反思6
今天早上在教学评估活动中,我讲授了《三角形三边的关系》一课,我对这一节课有以下点反思:
1、情景创设要以学生生活为基础,以更好地服务于教学内容为标准。
数学教学应结合生活实际问题和从学生已有的知识出发,使学生能在认识、学习和使用数学知识的过程中,初步体验到数学知识之间的联系,进一步感受到数学与现实生活的密切联系,增强学好数学的信心,培养应用数学的意识和能力。学生在生活中已经明确知道的拐弯要比走直路远,利用这一生活经验,我在这一课的开始借鉴了课本中把学生从家到学校多路选择的场景来激发学生的兴趣,使学生感觉更亲切自然。但是在这儿我有意识的.对课本原图作了一些改变,取消了原图中经过商店的一条道路,目的是让学生更容易把三点之间的道路抽象成三角形,跟本节内容更容易过渡衔接,跟以前教学本节内容时相比,我认为效果还是不错的。
2、小组活动要精心设计,力求有序有效、目的明确、可操作性强。
新课程标准认为,数学的知识、思想和方法应由学生在现实的数学活动中加以理解,通过实践活动,让学生获得更多的直接经验,从而激发学生的求知欲、增进自信心,从学生已有的生活经验和已有的知识出发,给学生提供观察、操作、实验、讨论、及独立思考的机会,通过共同的讨论交流,从而得出结论。因此,在数学活动中,要充分给予学生动手和思考的空间,同时要保证学生活动的有序性,从而实现活动的有效性。为了达到这一效果,我在这节课数学活动的设计中,注意了教师引导,在活动中从“有什么发现”到“为什么这样”逐层提出问题,让学生始终明确方向,有动手的强烈欲望,从而避免了以往教学过程中部分学生重结论轻过程,甚至直接去课本中寻找结论的现象,进一步培养了学生深入探究的习惯和能力。
3、汇报交流过程中,教师要注意把握重点,选例有针对性。
每次活动过程中及结束后,必然存在讨论交流的过程,这其中包括小组内的交流和在全班汇报交流。汇报不是小组交流的重复,在汇报过程中要看抓住具有代表性的例子,在存疑处适时引发下一次的实验活动及讨论过程。本课在小组汇报实验结果后,我先选择不能组成三角形的两组小棒组织学生讨论,并在大屏幕上动态演示,学生的注意力很自然地引导到研究三角形两边之和与第三边之间的关系。在此基础上,再一次组织小组讨论,研究其他几组能围成三角形的小棒的长度有什么共同点。通过比较分析,学生自然而然地发现了“三角形任意两边之和大于第三边”的规律。
4、练习设计向教学目标层层推进,注重强化知识生成及应用。
练习是数学教学重要的组成部分,恰到好处的练习,不仅可以巩固知识,形成技能,而且还可以启发思维,培养能力。在教学过程中除了为强化巩固设计的一般练习题,还要根据教学目标设计一些综合性题目和开放型题目,可以培养学生思维的灵活性和深刻性,克服学生思维的呆板性,更主要的是能激发学生求知的欲望、学习数学的兴趣。本节课中,我围绕“三角形任意两边之和大于第三边”这一性质设计了较为简单的“练一练”,目的是让学生正确应用知识;又通过设计“算一算”,目的是让学生充分理解三角形三边的关系,会求已知两条边,第三条边最小可以是几;又设计了“挑战自己”题目,此题为后面用字母表示三角形三条边的关系奠定了基础(a+b>ca+c>bb+c>a);最后一题设计了“做一做”,这道题目有一定难度,能够综合培养学生深入理解知识、灵活运用知识、学会有序思考、发展逻辑思维等多方面作用。总归,环环相扣的练习能使学生熟练正确的掌握知识。总得来说,这节课也留下了许多缺憾和不足,主要表现在:
1、学生动手操作、同伴互助不够充分,学生主观能动性没有调动起来,没能让学生充分体验到学习数学所带来的乐趣;
2、让学生总结“三角形三边的关系”时,学生尽管能说出“任意”两边之和大于第三边就能围成三角形,但在这个环节中我给学生说的机会不多,没能让更多的学生尝试说一说;
3、在分小组探讨“三角形三边的关系”性质时,由于担心耗时过多,怕完成不了后面的练习题目,没能放手让学生大胆、自主地探索三角形三边的关系;
4、本节课我的数学语言不够精准,说得有点儿多,显得啰嗦。
《三角形边的关系》教学反思7
在厦门听了北京的老师上这节课,便想跃跃欲试。不巧,有家长来办事,耽误了我制作学具的时间,怎么办呢?教学进度也不允许往后推一节课呀,何况明天因为七校联盟的决赛数学课已经调到下周一了!
就这么办!
我让每一个学生任意画了三个三角形,画好后让他们量出每个三角形每条边的长度,并做好记录。然后,引导他们发现三条边之间的关系,有的同学已经预习过了,忍不住大叫起来:“三角形任意两条边的和大于另一条边。”在这个学生的带动下,所有的学生都开始进行边的长度的两两相加并和第三条边进行比较,他们像发现新大陆似的欣喜。
是不是所有的三角形都有这样的规律呢?孩子们重新画了一个三角形进行验证。原计划安排的动手操作、发现探究变成了发现、猜想、验证、归纳。孩子们的积极性很高、很投入、很有成功感!
接下来是让学生阅读课本,读一读、看一看并解决课本中的“哪条路最近”的问题,让孩子们感受这个数学知识在生活中的应用,并思考例题3下面的问题,对三组数据进行判断:哪三条线段可以围成三角形?孩子们都能用这样的语句来叙述:因为6+8大于7,8+7大于6,7+6大于8,所以这三条线段能围成三角形。
然后,我出示了四组数据,让学生说明每一组数据中的三条线段是否可以围成三角形。先是独立思考,接着在小组内交流。我走入孩子们中间,其中有一个小组领会错误:3cm-2cm-1cm,他们的结论是有的能有的不能。我未置可否,在全班交流、评讲的时候特意安排他们组先汇报,他们一说完,全班一片哗然,反对的声音坚决果断。我让一个孩子帮助出错的小组,这个孩子言之凿凿,条理清晰、富于逻辑,特别强调了“任意”二字。我望了望出错的小组,他们不好意思地露出了笑容。
是否每一次判断都要将每两条线段相加再和另一条线段比较呢?当我提出这个问题时出现了短暂的沉寂,孩子们都陷入了思考。
我指着“7厘米,3厘米,5厘米”对孩子们说,你是否可以只计算一次就作出判断呢?孩子们都说:“只要看3和5的和大于7就可以判断。”
看着孩子们依然在思索,还是没有谁来“揭秘”。我再次让他们观察判断过的几道题,这时文丽这个女孩举起手来,自信地说:“只要计算最短的两条边的和,看会不会大于第三边就可以了!”我含笑地望着课代表和几个*时发言积极、思维活跃的孩子:“有意见吗?”他们对自己落于人后似乎有些失望,但是孩子很高兴地回答:“我赞成文丽的意见!”好家伙!
书上的题他们很快就做完了,当我巡视的时候,孩子们争先恐后地把我递到我的面前,让我目不暇接。我特别留意了小琛、小琪,她们都能用只计算两条短边的和的简便的方法进行判断,我对她们竖起了大拇指。
孩子们在总结的时候都说,今天自己的收获特别大,学得特别好。看着孩子们高涨的情绪,我顿然滋生享受教学、享受课堂的感觉。
激发学生探究的动机,让学生获得成功感,培养学生思维的逻辑性和回答问题的逻辑性应该贯穿于每一节课。
《三角形边的关系》教学反思8
本节课是一节探究型课型,教学中,不仅应关注数学知识与结论,更应该关注学生主动探究的过程。因此,根据教材和学生的实际,我从知识、能力、情感三个方面制定了教学目标,在教学中,进行了一些探索与尝试:
一、充分体现数学探究型课型的特点。
本节课我按照游戏操作引入——产生问题——猜想——验证——推广运用这一主线组织教学的。让学生在行动中生问题,由问题生猜想,由猜想生价值。教学中,我给学生充分的时间和空间去经历摆一摆、画一画、算一算的自主探索过程,虽然花的时间比较多,一些课后的练习不能在这堂课中解决,但是我认为是很值得的,我们不光是获得结论,更应该让学生经历探究过程,培养学生科学的探究态度和初步的探究能力、思维得到发展。
二、关注对学生学习过程的评价,创设融洽的学习氛围。
本节课我比较注重创设良好的学习氛围,以问题为中心,吸引学生积极思考,主动探究,形成师生互动,同时还注重用激励式的语言评价学生,激发学生积极思考,主动探求。
《三角形边的关系》教学反思9
三角形边的关系是在认识了三角形的“分类”和“内角和”的基础上进行教学的。教学重点主要是探讨:任意三根小棒能否围成三角形?研究“三角形边的关系”得出“较短两边之和大于第三边”我不急于给学生答案,而是经过讨论验证后用“任意”代替“较短”,这样学生更清晰。本节课我主要是让学生经历一个探究解决问题的过程,引导学生先发现问题、提出假设、实验验证、得出结论、实践应用的过程。我在教学中,关键是抓住“任意的三条线段能不能围成一个三角形?”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。我这样设计主要体现了以下三点:
1、创设问题情景,以疑激思。
学生的积极思维往往是由问题开始,又在解决问题中得到发展。因此,课堂一开始,我是让学生拿出课前准备好的四组小棒,让学生动手摆一摆并提出“是否任意三条线段就一定能围成三角形呢?”设置悬念,引起学生的积极思考,让学生对三角形三边的关系产生好奇,引发学生探究欲望,从而去探索解决问题的方法。
2、实现数学知识的再创造。
“再创造”是指创设合适的条件,让学生在学习数学的过程中,经历一遍发现、创新的过程,即根据自己的体验,用自己的思维方式重新创造有关的数学知识。它是数学学习活动的灵魂。因此在教学中,我有意设置一些动手操作,共同探讨的活动,尽可能多些时间给学生创造展示自己思维的空间和时间,千方百计地让学生参与到知识形成的全过程,从而实现数学知识的“再创造”。如这节课中我设计了让学生动手拼三角形,小组讨论三角形边的关系,通过实践操作、观察、思考学生亲自体验“任意两边之和大于第三边”这一结论的普遍性。使学习真正成为学生自主的活动,也为学生提供了获得成功的机会。
3、密切数学知识与现实生活的联系。
本节课我结合学生已有的生活知识和生活经验,创设学生熟知的、贴近他们生活实际的教学活动情境,架起现实生活与数学学习的桥梁,使学生从周围熟悉的事物中学习,感受数学与现实生活的联系,让学生感受到生活中处处有输血,数学就在我们身边
《三角形边的关系》教学反思10
《三角形边的关系》是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形边的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。开课前我先观摩网上优秀视频,学习优秀案例,用两天的时间准备教案,在备课的过程中,我一直在思考,到底该如何引导三角形任意两边之和大于第三边。因此,教学中,我让学生亲身经历了探究的过程,围绕怎样的三根小棒能摆成一个三角形?这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究能围成三角形的三条边之间到底有什么关系?虽然本节课能达到预期的效果,但在实验活动中,存在着许多问题。因此,我对这节课做了如下的反思:
一、关注学生亲身经历
本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分,通过联系生活,激发兴趣。出示一组实物图片,使学生初步体验三角形在生活中的广泛应用,激发学生的学习热情,调动学生学习的积极性。二是动手操作部分,学生用手中的小棒来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。这个实验活动过程中也存在着很多的不足,例如:让学生到展示台展示准备得不够充分,只是简单的叫几位学生去展示,没有走到学生中去了解实验结果,感觉只是停留在表面。怎样的三根小棒才能围成一个三角形呢,学生实验后,我只是出示一个例子就下结论,评课后,通过老师的点评,让我明白了,一个实验活动要有两到三个例子,才能下结论。
二、练习设计层层深入
评价一节数学课,最直接有效的方式就是通过练习得到的反馈,而学生之间参差不齐,为了能兼顾全班学生的整体水*,练习题我设计层层深入,由浅入深。1.判断三组小棒能否围成三角形。2.用同样长的3根、4根、5根、6根小棒能不能摆成一个三角形?第1小题我要求学生除了判断能不能摆成三角形?还要求学生们写出为什么能围成一个三角形,为什么不能围成一个三角形的理由。从学生的反应,可以看出正确率很高,让我惊讶的是,他们理由说的很棒,只要比较两根较短的小棒是否大于那根长的小棒就能知道是否能围成一个三角形。有的学生用算式表示(如:3+4>6)等,学生们能懂得把所学的知识转化为自己的能力来解决问题。第2个小题,我让学生们通过动手操作、猜想、实验、验证及同桌互相讨论等活动,来解答用3根同样长的小棒能不能摆成一个三角形,若能摆成,它是一个什么样的三角形。学生都摆出了一个等边三角形出来。接下来再分别动手操作4根、5根、6根同样长的小棒是否能摆成一个三角形。若能摆成,它是一个什么样的三角形。通过这个练习,培养了学生的自主探索、勇于实践、敢于发现问题,从而在动手能力与同伴交流的过程中得出结论的好品质。
三角形三边关系优秀教学设计 (菁选5篇)(扩展6)
——三角形的认识教学设计 (菁选5篇)
三角形的认识教学设计1
教学目的:
1使学生理解三角形的意义,掌握三角形的特征和特性,。
2经历度量三角形边长的实践活动,理解三角形三边不等的关系
3通过引导学生自主探索、动手操作、培养初步的创新精神和实践能力。
4让学生树立几何知识源于客观实际,用于实际的观念,激发学生学习兴趣。
教学重点:
掌握三角形的特性
教学难点;
懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;
教学过程:
一、联系生活
找一找生活中有哪些物体的形状或表面是三角形?请收集和拍摄这类的图片。
二、创设情境,导入新课:
1让学生说说生活中有哪些物体的形状是三角形的。展示学生收集的有关三角形的图片
2播放录像
师:接下来来看老师收集的到的一组有关三角形的录像资料。
3导入新课。
师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。(板书:三角形的认识)
三、师生互动引导探索
(一)三角形的意义:
1活动。要求:(1)每个小组利用教师事先为其准备的三根小棒,把小棒看成一条线段,利用这三条线段摆一个三角形。比一比,看哪一个小组做得最快!
(提供的小棒有一组摆不成的。)
2学生拼图时可能会出现以下几种情况:
请同学一起来观看做得有代表性和做得有特色的图案(展示学生所摆的图)
请同学们一起做裁判,看看哪些是三角形?[学生会认为(1)、(2)、(3)(4)为三角形,但对(2)、(3)(4)有争议]
师:那你认为怎么样的图形才是三角形?到底这几个图是不是三角形呢?同学们可以从书上找到答案!请学生阅读课本的内容。
板书:三条线段围城的图形叫做三角形。
因此判断图案(2)(3)(4)不是三角形。
判断:下面图形,哪些是三角形?哪些不是三角形?
3.教师问:除了三角形概念,书中还向我们介绍了什么?
(1)三角形的边、角、顶点
(2)三角形表示法;
(3)三角形的高和底
(二)三角形的特性:
1课件出示自行车、屋檐、吊架等三角形的图片,为什么这些部位要用三角形?
2解决这个问题,下面我们先做个试验:
出示三角形和*行四边形的教具,让学生试拉它们,并思考,你发现了什么?
3要使*行四边形不变形,应怎么办?试试看。
4那些物体中用到三角形,你知道为什么了吗?三角形的这种特性在生活中的应用非常广泛,在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。
(三)三角形两边之和大于第三边
1师:在我们围三角形的时候,有一组同学的三条线段围不成三角形,看来不是任意三个小棒就可以围成三角形,这里面也有奥秘。
这与它三条线段的长短有关。现在我们就来讨论这个问题——到底组成三角形的这三条线段有什么特点?
2学生小组活动:(时间约6分钟)。
下列每组数是三根小木棒的长度,用它们能摆成三角形吗?(学生每回答一题后就利用电脑动画进行演示:三条线段是否能组成三角形)
(1)6,7,8;(2)5,4,9;(3)3,6,10;
你发现了什么?
3学生探讨结束后让学生代表发言,总结归纳三角形三边的不等关系。学生代表可结合教具演示。
教师问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的大小关系来检验)。
4得到结论:三角形任意两边之和大于第三边(电脑显示)。
教师问:三角形的两边之和大于第三边,那么,三角形的`两边之差与第三边有何关系呢?
感兴趣的同学还可以下课继续研究。
5巩固练习:为了营造更美的城市,许多城市加强了绿化建设。这些绿化地带是不允许踩的。(电脑动画演示有人斜穿草地的实践问题)。他运用了我们学习过的什么知识?
6(1)有人说自己步子大,一步能走两米多,你相信吗?为什么?
(由学生小组讨论后回答。然后电脑演示篮球明星姚明的身高及腿长,以此来判断步幅应有多大?)
7有两根长度分别为2cm和5cm的木棒
(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?
(3)在能摆成三角形,第三边能用的木棒的长度范围是
四、反思回顾
通过这节课的学习,你有什么收获?
板书设计
三角形的认识
由三条线段围成的图形叫做三角形.
三条边、三个角、三个顶点
特性:稳定性
两边之和大于第三边
三角形的认识教学设计2
教学内容:人教版四年级下册第五单元三有形P59、60、61。
教材简析:《三角形的认识》是人教版四年级下册第五单元的第一课时,本课是六年制数学第二学段“空间与图形”中的学习内容。在此之前,学生已经认识了*行四边形和梯形的特征。对三角形有了直观地认识,已经能从*面图形中分辨出三角形。本节课主要是帮助学生在原有的感性认识基础上,理解三角形的意义,掌握它的特征,为今后进一步学习其他几何图形的有关知识打下基础。
教学目标:1、在原有的认知基础上,通过自学书本、观看视频讲解,逐步认识三角形,知道三角形各部分名称并概括出三角形的.定义;学会用符号语言表示三角形。
2、认识三角形的高和底,会画三角形的高。
3、联系生活实际、通过实验操作理解三角形的稳定性及其应用,感受到三角形的三边长度固定,形状大小就确定的稳定性的本质。
4、培养学生的空间观念;感受数学与生活的联系,学会用数学的眼光看生活。
教学重点:三角形的概念,感知稳定性。
教学难点:高的画法和意义。
教学预设过程:
一、谈话引入
1、孩子们,三角形,你认识了吗?(认识了)
相信大家已经进行了自学,认真看过学习视频了,那今天这节课我们要做些什么呢?
二、汇报自主学习导学单
1、画三角形、揭示概念
(1)请小老师上台画三角形。
(2)什么叫三角形呢?师板书:由3条线段围成的图形叫做三角形
(3)哪位小老师给大家介绍一下,你对“围成”二字的理解呢?
强调出:三角形每相邻两条线段的端点相连。
(4)还知道三角形有( )个顶点、( )条边、( )个角?师板书:3个顶点、3条边、3个角
2、学会用符号语言表示三角形
为了表达的方便,现在可以给这个三角形取个名字了吧!
引导说出:三角形ABC,师标出字母ABC
说一说角A角B角C,各条线段的名称。
3、认识三角形的高和底,会画三角形的高
(1)汇报导学单上高和底的概念
(2)“三角形高的认识”学习视频回顾
(3)找出黑板上三角形的3组顶点与对边。揭示板书:3条高
(4)同桌交流导学单上画高的过程
(5)指名板演:作高
4、三角形的稳定性及应用
(1)交流导学单上第5小题。师板书:稳定性
(2)拿出学具,拼摆三角形及四边形
(3)同桌互相交换,拉一拉,谈发现;前后排的同学转过来比一比,谈发现。
(4)说一说生活中哪里有应用到三角形的稳定性呢?
三、巩固练习、应用新知
1、快速找出对应的顶点和对边
2、请画出下面三角形中指定底边上的高。
三角形的认识——姜微微
(1)实物投影校对。
(2)直角三角形中,两条直角边互为高和底。
(3)利用第3个三角形找一找外高,指一指。
3、实践操作
四、课堂总结1、[课件演示]画一个三角形及一条底边上的高,旋转三角形。
师:孩子们,让我们静静地看大屏幕,静静地回忆。
三角形的认识教学设计3
教学内容:
人教版义务教育课标实验教材数学四年级下册第80页
教学目标:
1. 使学生认识什么样的图形叫三角形,知道三角形的特征和按角分类的方法,掌握三角形的特性。
2. 能够识别锐角三角形、直角三角形和钝角三角形,关知道它们三者之间的关系。
3. 渗透观察比较、抽象概括和迁移推理等数学思维方法。培养学生发现欣赏的意识,感受生活中数学,激发学习兴趣。
教学过程:
一、认识三角形
1. 摆三角形
(1)(课件演示)老师给大家准备了一些图片,仔细观察:看看这些事物中都有我们学过的哪些图形?(欣赏两遍)
(三角形、圆形、梯形……)
这节课我们来重点研究三角形
板书:三角形的认识
(2)(准备小棒)现在想想三角形是什么样子的?听要求:请用手中的小棒快速地摆一个三角形。(生动手摆三角形,同时老师在黑板上画三角形)
2. 三角形的特性
(1)师拿出准备好的插接长方形,问:这是什么图形?
师拉动长方形,问:你发现了什么?
(长方形变化了,说明它不稳定)
(2)拉一拉刚才的三角形,你发现了什么?
(没有变化,说明三角形具有稳定性)
板书:稳定性
三角形的稳定性是三角形的特性,在实际生活中有着非常广泛的应用,谁能说说日常生活中都有哪些地方运用了三角形的稳定性?
二、三角形的特征
1. 什么是三角形
刚才我们动手摆了三角形,还知道了三角形具有稳定性,你认识三角形了吗?
出示:
手势表示哪个是三角形?
根据刚才的学习谁能用一句话简单地说说什么是三角形?
(重点引导学生理解“围成”)
板书:由三条线段围成的图形叫三角形
2. 三角形的各部分名称
猜测:围成三角形的每条线段叫什么?(边)三角形一共有几条边?(3条边)
每两条边线段的交点叫什么?(顶点)三角形一共有几个顶点?(3个顶点)
仔细观察三角形除了有三条边,三个顶点之外,还有什么?(3个角)
谁能说说三角形有什么特征?(三角形有3条边,3个顶点,3个角)
生回答师板书。
三、三角形的分类
1. 分类
2. 刚才大家表现非常棒,积极动脑思考,回答问题也非常积极,那现在看看大家的动手能力和大家的合作能力怎么样?
出示六种三角形
看要求:(课件演示)给这些三角形分类:
要求:
(1)给每类三角形取个名字。
(2)小组说说为什么这样取名?
生运用学具小组合作,老师巡回指导。
生汇报,师总结板书:
锐角三角形 1个? 3个?
直角三角形 1个
钝角三角形 1个
3、小游戏:
猜角游戏 师只露出一个角,生猜这是什么三角形?
说说什么是锐角三角形、直角三角形、钝角三角形。
四、小结:通过这一节课的学习你学到了什么知识?
考考你:
选择:
(1)由三条( )围成的图形叫三角形。
A直线 B射线 C线段
(2)( )的三角形叫锐角三角形。
A有一个角是锐角 B有两个角是锐角 C有三个角是锐角
判断:
(1) 有三条线段的图形一定是三角形。
(2) 任何三角形里都有两个锐角。
(3) 直角三角形中只有一个角是直角。
(4) 有位同学看到三角形中有一个锐角,就说这个三角形是锐角三角形。(
三角形的认识教学设计4
教材分析:
本单元内内容是学生在学习了角、初步认识三角形的基础上安排的系统研究三角形特征的知识。本课教学内容为第一课时,教材安排了两个例题:例1通过让学生从现实背景中找出三角形来初步感知,例2着重让学生通过操作活动去体验和了解三角形的两边之和大于第三边的特征,例2的内容是课程标准新增加的内容。教材在编排上注重了与学生生活的联系,注重了学生思维能力的培养,不是把知识简单地呈现给学生,而是让学生在丰富的实践活动中发现现象、研究原因、探索规律,充分体现了让学生在数学活动中自主发现和主动建构的特点。
教学思路:
“动手实践、自主探索、合作交流”是新课程倡导的学生学习的重要方式。在本课教学中,我力主让学生从生活中熟悉的物体去感知三角形,在充分的操作活动中去体验、感悟,经历探索知识形成的全过程,以外在的动,促进他们思维内在的动,促使学生主动构建知识,培养学生探索数学问题的能力,发展数学思维。在练习设计上除了课本习题外,作了适当补充,为学习能力较强的学生提供了一个自主探究的空间,使他们探索数学问题的能力得到提升。
教学目标:
1、引导学生在通过观察、操作、实验等学学习活动中,感受并发现三角形的有关特征,了解三角形两边之和大于第三边。
2、在经历充分的 探索过程中,提高学生的观察能力、推理能力,发展空间观念。
3、使学生体会三角形在日常生活中的普遍性,通过学习进一步激发其学习的兴趣好积极性。
教学重点:
认识三角形的基本特征,知道三角形两边之和大于第三边。
教学难点:
探究三角形两边之和大于第三边。
教学准备:
学生每人准备小棒若干,4厘米、5厘米、6厘米、10厘米的彩色纸条各一根(颜色同课本),教学课件。
教学过程:
一、创设情境,引入新课
1、谈话:江阴长江大桥是我们泰州市在长江上架设的第一座大桥,是泰州人的骄傲,同学们见过吗?(出示江阴长江大桥图片)
师:观察一下,你能在这座大桥上找到我们熟悉的图形吗?
板书:三角形
【设计意图】:由课本插图改为学生熟悉的江阴长江大桥引入,使学生感到亲切,能激发他们的学习兴趣。
2、寻找生活中的三角形。
学生举例说一说生活中见到的三角形。
教师课件展示:红领巾、三角尺、交通指示牌、房屋等含有三角形物体的图片。
【设计意图】:从生活中丰富的三角形物体的图片,使学生从整体上进一步感知三角形,使学生体会到数学与生活的密切联系,唤起他们主动探究的欲望。
二、动手操作,感悟特征
1、做三角形,初步形成概念。
⑴师:三角形是我们非常熟悉的一种图形,你能用自己手中的材料做一个三角形吗?
学生动手操作,小组交流,全班展示。
⑵学生可能出现的方法:
①用三根小棒摆成一个三角形。
②在钉子板上围成三角形。
③用三角板画一个三角形。
④在方格上画一个三角形。
分别指名学生展示自己制作的三角形,并要求其说说自己的想法。
【设计意图】:不同的学生由于生活经验的不同,呈现出来的三角形的形状、大小、位置也不一样,这一环节重点让学生在交流时分析各种做法的共同点,初步感知三角形的特征。
⑶讨论:出示小棒摆的三角形:
这样的图形是三角形吗?为什么?学生讨论教师将图形移动。
【设计意图】:学生对三角形的认识停留在较肤浅的层面上,他们有时会把类似于三角形的图形当作三角形,通过这个环节的设计,三角形是由三长线围成的这一重要特征。
2、认识三角形各部分名称。
教师出示手中的小棒,我们用小棒围成一个三角形时,实际上是把这根小棒看成一条什么?(线段)
围成一个三角形,需要几条线段?(板书:3条)
师:我们把这三条线段叫做三角形的边。(板书:边)
问:三角形除了边,还有什么?
学生讨论、交流。
教师小结并板书:三条边、三个角、三个顶点。
3、画三角形。
⑴学生在作业本上画一个三角形,同桌互相说一说三角形的边、角、顶角。
⑵在点子图上画两个三角形,(课本想想做做第1题)
学生画好后,再指名说三角形的特征。
【设计意图】:学生在“做三角形、画三角形、比较三角形”等活动中逐步由具体到抽象,由生活到数学,初步实现了三角形的概念的主动建构。
三、合作探究,深入探索。
1、疑问引入
师:通过刚才的活动,我们知道了三角形是三条线段围成的,现在给你任意三根小棒,你能围成三角形吗?
学生自由讨论、交流。
师:能,还是不能,我们用什么办法来解决呢?
板书:实验
【设计意图】:数学猜想是探索数学规律或本质时的一种策略,当学生基本认识了三角形的特征后,教师提出这个猜想的话题,激发了学生对正确结果的渴望,从而水到渠成地进入下一步学习环节——小组实验。
2、合作探究
⑴学生拿出课前准备的信封,拿出4厘米、5厘米、6厘米、10厘米的彩色纸条各一根。
⑵出示表格
选 用 小 棒 情 况
能否围成三角形
10厘米(红)
6厘米(黄)
5厘米(绿)
4厘米(蓝)
能
否
注:请在表格中用“√”表示。
你发现了什么?
⑶学生分小组实验,并填写表格,组织汇报。
⑷教师用视频展示台展示,学生填写的实验记录表。
师:我们先来看选哪几根小棒不能围成三角形?
教师根据学生的讨论,分别用电脑演示:
A : 10、4、5 B : 10、6、4
研究:这两组数据都不能围成三角形,你有什么发现?
板书:4+5<10 6+4=10
小结:两边之和小于第三边,不能围成三角形。
两边之和等于第三边,不能围成三角形。
师:哪几根小棒能围成三角形?
板书:5、6、10 4、5、6
观察一下,你又有什么发现?
将上述板书补充为:
5+6>10 4+5>6
小结:两边之和大于第三边能围成三角形。
【设计意图】:学生通过实验验证自己的猜想,在交流中碰撞思维,引发思考,经历了发现问题、合作探究,解决问题主动获取的过程,学生的主体作用得到充分的发挥。
⑸讨论:在10、4、5和10、6、4这两组数据中,
10+4>5 10+6>4
10+5>4 10+4>6
都有符合两边之和大于第三边的条件,为什么它们不能围成三角形呢?
学生再次讨论、交流。
⑹引导小结:三角形任意两边的长度之和大于第三边。
,三角形的认识教学设计2
⑺优化判断:
长边+短边>中边 长边+中边>短边 短边+中边>长边
问题:只要算一次就能判断出能否围成三角形,你认为该选哪个?为什么?
结论:短边之和大于长边,就能围成三角形。
【设计意图】:教材中的结论是“三角形两条边长度之和大于第三边。”学生对于这个概念的理解还是比较困难的。通过上述环节设计,使学生进一步明确:必须是任意两边长度之和大于第三边才能围成三角形,同时在实际判断中,只要判断“短边之和大于长边”这一次就行了。这样,优化了学生的判断方法,提高了他们的思维能力和解决问题的能力。
验证:同学们量一量自己刚才所画的三角形的三条边的长度,再算一算,看看两条短边之和是否大于长边?
四、解决问题,发展新知。
1、下面哪几组中的三条线段可以围成一个三角形?为什么?
2cm 5cm 6cm
4cm 2cm 2cm
5cm 5cm 5cm
补充问题:用一个算式来表示能还是不能。
想一想:第二个围成的三角形的形状有什么特点?
【设计意图】:充分挖掘教材资源,提升练习层次,既巩固了新知,又拓展了学生的思维。
2、课本“想想做做第3题”。
要求学生解释理由。
3、玩一玩:用三根小棒围成一个三角形,其中两根小棒长度分别是10厘米和6厘米,那么第三根小棒的长度是多少?你认为第三根小棒可以有多少种情况?
学生小组合作探究。
结论:第三根小棒的长度在4厘米与16厘米之间,如果不确定是整厘米数的话,它有无数种可能。
【设计意图】:这是一道开放题,既复习了今天所学内容,又为学生,尤其是学习能力较强的学生提供了一个自己探究的空间,使他们探索数学问题的能力得到提升。
五、课内总结,内化新知。
通过本节课的学习,你知道了哪些知识?
你是通过哪些方法获得这些知识的?
三角形的认识教学设计5
[设计思路]
这节课主要运用动手实践、自主探索、合作交流的学习方式,通过操作、讨论、交流等活动,使学生主动地获得数学知识的技能,发展学生的思维能力,培养学生创新意识。教学中加强数学知识与生活实际的联系,让学生体会到数学的价值,激发学生的学习兴趣,培养学生应用意识和实践能力。设计练习时应具有一定针对性、层次性、实践性,以此巩固三角形特征的认识。
[教学目标]
1、使学生联系实际和利用生活经验,通过观察、操作、测量、等学习活动认识三角形的基本特征,知道三角形各部分的名称,了解三角形的两边之和大于第三边。
2、让学生在由实物到图形的抽象过程中,在探索图形特征以及相关结论的过程中,进一步发展空间观念,锻炼思维能力。
[教具、学具准备]
学生准备小棒若干根(包括10cm、6cm、5cm、4cm长的小棒各一根),三角板,铁丝。
[教学过程]
一、创设情境,提出问题
1、(课件出示:如下图)师:老师每天上班都要从学校先经过加油站,再从加油站到学校,有没有更近一点的路呢?(从家直接去学校)
2、师:为什么从家直接去学校这条路最近呢?我们可以把这几个地点和路线看成什么图形呢?
3、谈话:三角形是我们过去认识的图形,这里面还有很多数学问题,今天同学要通过动手操作,自己来探索发现。(板书:三角形的认识)
[设计意图:创设学生熟悉的生活情境,提出问题引发学生深入思考,引起悬念,从而激起学生探索的愿望]
二、动手操作、探索新知
(一)感知三角形
1、师:生活中你在哪些地方见到过三角形?课件演示生活中的一些三角形。
2、师:同学们在生活中找出了许多三角形,你能想办法自己做个三角形吗?
学生操作,教师巡视指导
3、展示学生做出的各种三角形,并说说做的过程和方法(学生可能是用小棒摆,铁丝围,用纸折,用三角板画……)
指名让一名学生用小棒摆一个三角形,师故意拨动小棒,使学生明白摆小棒时应首尾相连。
4、师:同学们用自己的方法做出了不同的三角形,你们能自己画一个三角形吗?在课本第23页的点子图上自己画一个三角形。
5、师在黑板上画出三角形。
6、师:我们已经做了三角形,又画了三角形,你们知道三角形各部分的名称吗?自学课本第22页下面的图。
学生找出黑板上三角形的三条边、三个角、三个顶点。(师相机板书)
7、在自己画出的三角形上,标出各部分的名称。
8、小结:三角形是有三条线段围成的图形,它有三条边、三个角、三个顶点。
[设计意图:通过让学生自己动手做三角形、画三角形,并在学生摆小棒的过程中故意“捣乱”,让学生体验到三角形是由三条线段围成的图形,也为后面学生的活动打好基础;通过自学认识三角形有三条边、三个角、三个顶点,逐步形成三角形的概念。]
(二)感受三角形三条边的关系
1、谈话:刚才我们用小棒摆了三角形,如果任意给你们三根小棒能把他们围成三角形吗?(有的说“能”,有的说“不能”。)让我们动手实验一下吧!
小组活动要求:
a、从四根中任意选三根(小棒的长度分别为:10cm、6cm、5cm、4cm)
b、记录所选三根小棒的长度,看一看能否用选定的三根小棒围成一个三角形。
c、小组讨论有什么发现?
学生操作,教师巡视指导
2、展示和报告实验结果,说说选的哪三根小棒能围成三角形,哪三根小棒不能围成三角形。
3、说说能不能围成三角形跟小棒的什么有关?(长度)课件演示不能围成三角形的两种情况。
4、师:通过刚才的小组活动,老师的演示,你有什么发现?
引导学生说出:当两根小棒的长度之和等于或小于第三根时,就不能围成一个三角形。
5、观察能围成的三角形的三条边,看看有什么发现?
师生共同总结出:三角形两条边长度的和大于第三条边。
[设计意图:让学生动手操作、小组合作,让学生自己在操作过程中感受三角形三条边之间的关系;在交流中升华。培养学生动手操作能力,真正体现了学生学习方式的改善,体现了以学生发展为本的新理念。]
三、变式练习、加深理解
1、回到课开始的关于“老师去学校”的生活情境,现在可以说说什么从家直接去学校这条路近呢?
2、判断下面的线段能不能围成三角形?(“想想做做”第二题)
2厘米、4厘米、6厘米
5厘米、2厘米、5厘米
6厘米、2厘米、5厘米
总结窍门:只要看较短的两边之和大于第三边就能判断能否围成三角形。
3、把一根14厘米长的吸管剪成三段,用线串成一个三角形,能做多少个?如果每小段剪成整厘米长,能剪几个?
[设计意图:三个练习设计体现了一定的层次性,第一个练习前后呼应,让学生认识到数学知识源于生活,又用于生活;第二个练习旨在让学生学以致用,并总结出窍门;第三个练习有一定难度,拓展学生的思维,使不同的学生得到不同的发展,体现了“下要保底,上不封顶”的教学思想。
四、总结延伸
1、 师:这节课你对三角形有了什么新的认识?你有那些收获?
2、(课件演示)摇晃的椅子加了一根木棒就稳了,艾非尔铁塔高一千多米,这么多年依然雄伟壮观……这到底什么原因呢?其实这就跟三角形一个重要的特征有关,有兴趣的同学课后可以去查查资料研究研究。
推荐访问:角形 教学设计 关系 三角形三边关系教学设计 菁选五篇 三角形三边关系优秀教学设计1 三角形三边关系优秀教学设计一等奖