八年级数学知识要点总结1 一、因式分解 因式分解:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是下面是小编为大家整理的八年级数学知识要点总结3篇(2023年),供大家参考。
八年级数学知识要点总结1
一、因式分解
因式分解:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式。
二、熟练掌握因式分解的常用方法.
1、提公因式法
提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数; 提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项。
注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。 2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式:
①*方差公式: a2-b2= (a+b)(a-b) ②完全*方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
八年级数学知识要点总结2
三角形
1、三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的分类
三角形按边的关系分类如下:
三角形 底和腰不相等的等腰三角形
等边三角形 三角形按角的关系分类如下:
三角形 锐角三角形(三个角都是锐角的三角形)
钝角三角形(有一个角为钝角的三角形)
3、三角形有下面三个特性: (1)三角形有三条线段
(2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接
4、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系。
5、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。三角形外角的和等于360°。 推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角。
推荐访问: