当前位置:赋力文档网 > 专题范文>教案设计> 正文

2023《有理数乘方》教案3篇

发表于:2023-02-25 10:35:07 来源:网友投稿

《有理数的乘方》优秀教案1  教学目标  1、理解有理数乘方的概念,掌握有理数乘方的运算;  2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;  3、渗透分类讨论思想?  教学重下面是小编为大家整理的2023《有理数乘方》教案3篇,供大家参考。

2023《有理数乘方》教案3篇

《有理数的乘方》优秀教案1

  教学目标

  1、理解有理数乘方的概念,掌握有理数乘方的运算;

  2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;

  3、渗透分类讨论思想?

  教学重点和难点

  重点:有理数乘方的运算?

  难点:有理数乘方运算的符号法则?

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  在小学我们已经学习过aa,记作a2,读作a的*方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?

  在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?

  二讲授新课

  1、求n个相同因数的积的运算叫做乘方?

  2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

  一般地,在an中,a取任意有理数,n取正整数?

  应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

  3、我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?

  例1 计算:

  (1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;

  (3)0,02,03,04?

  教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

  引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

  (1)模向观察

  正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

  (2)纵向观察

  互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

  (3)任何一个数的偶次幂都是什么数?

  任何一个数的偶次幂都是非负数?

  你能把上述的结论用数学符号语言表示吗?

  当a0时,an0(n是正整数);

  当a

  当a=0时,an=0(n是正整数)?

  (以上为有理数乘方运算的符号法则)

  a2n=(-a)2n(n是正整数);

  =-(-a)2n-1(n是正整数);

  a2n0(a是有理数,n是正整数)?

  例2 计算:

  (1)(-3)2,(-3)3,[-(-3)]5;

  (2)-32,-33,-(-3)5;

  (3) , ?

  让三个学生在黑板上计算?

  教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?

  教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?

  课堂练习

  计算:

  (1) , , ,- , ;

  (2)(-1)2001,322,-42(-4)2,-23(-2)3;

  (3)(-1)n-1?

  三、小结

  让学生回忆,做出小结:

  1、乘方的有关概念?

  2、乘方的符号法则?3?括号的作用?

  四、作业

  1、计算下列各式:

  (-3)2;(-2)3;(-4)4; ;-0.12;

  -(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?

  2、填表:

  3、a=-3,b=-5,c=4时,求下列各代数式的值:

  (1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?

  4、当a是负数时,判断下列各式是否成立?

  (1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .

  5、*方得9的数有几个?是什么?有没有*方得-9的有理数?为什么?

  6、若(a+1)2+|b-2|=0,求a2000b3的值?

  课堂教学设计说明

  1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的`认知水*,我们再一次把培养学生的观察、归纳等能力列入了教学目标?

  2、数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,,an是学生通过类推得到的?

  推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?

  3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?

  我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?

  4、有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?

《有理数的乘方》优秀教案2

  教学目标:

  1、知识与技能:

  了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。

  2、过程与方法:

  在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。

  重点、难点:

  1、重点:用科学记数法表示绝对值较大的数。

  2、难点:熟练用科学记数法表示绝对值较大的数。

  教学过程:

  一、创设情景,导入新课

  太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。

  二、合作交流,解读探究

  1、填空

  = , = , =

  2.8×= ,2.8×= ,2.8×=

  2、学生探究:从前面的填空可知:

  100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×

  从上面你能发现什么规律吗?

  (1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。

  三、应用迁移,巩固提高

  1、做一做:课本P44例2

  解答见教材,注意10的指数比原数的整数位少1

  2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

  3、做一做:用科学记数法表示下列各数:

  (1) 108000;(2)-3200000

  两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。

  4、P44练习第1、2、3题

  四、总结反思

  用科学记数法表示时要注意:(1)a是整数位只有一位的数,(2)10的指数n比原数的整数位数少1。

  五、作业:P45习题1.6A组第3、4、5题


《有理数的乘方》优秀教案3篇扩展阅读


《有理数的乘方》优秀教案3篇(扩展1)

——有理数的乘方教学反思3篇

有理数的乘方教学反思1

  在新课程理念的指导下,我设计并实施了《有理数的乘方》这节课的教学,感触很深。在关注学生小组合作参与学习的过程中,发现学生的想像力极为丰富,学生很有潜质,只要教师充当学生学习活动中*等的指导者、促进者,让学生真正成为实践探索者、知识构建者、愉快的收获者,这种新型的师生关系一定会促使学生思维得到发展,能力得到提高。我更加理解了“创造性地使用教材”和“真正地以学生为本”的理念,深感这种理念在教学实践中落实的必要性、艰巨性。任重而道远,我将把科学探索贯穿于教学始终,与学生共同发展。

有理数的乘方教学反思2

  有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。

  要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘即。a。a。a…a=,记作。在教学上应该抓住以下几点:

  一、乘方是一种运算。相当于“+、-、×、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如的结果是8。所以说的幂是8。与2×4一样,2×4=8。所以不能说8是幂,说成23的幂是8。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果。

  二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师在教学时强调做乘方时先确定符号再计算,如=4。

  三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与的区别。注意–5的*方与1/2的*方的书写方法。

  四、注意讲清有理数乘方中的常见错误。如,的区别。前者是表示2的*方的相反数,后记者是表示–2的*方,写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系

  同时我们作为老师应当做到:

  一、博采众长,有效反思

  在学校,向学生学习,向同组教师和老前辈学习。学生学习愉快或困惑,是我们反思的最基本源泉,为什么学生学习会愉快、轻松或困难,怎样使学生学习更轻松愉快,怎样使学习解除困难,我该怎么做,可通过问卷或谈心让学生说说心里话。同学校向老前辈学习可谓近水楼台先得月,通过听老教师的课或请老教师听课评课,与他们一起讨论,可以让你增加教学的经验,提高教学理论修养。在不断的听、评与反思中逐渐形成自己的教学风格。走出校外多参加教研室组织的公开课、示范课、优质课,同样能从别人的上课和评课中增加自己的反思力。

  课余,系统的理论学习是必不可少的。只有将实践中的问题与理论结合起来,把特殊的问题归纳到一般化,问题和经验经过提升和拓展,再到实践中去检验,才能不断提高反思的有效性。如写文章和搞课题研究其实也是一种很好反思行为。

  二、记教学失败之处

  大的方面看,教学方法运用是否得当,媒体运用是否收到成效;重点、难点是否突破,学生的思维是否打开;小的方面看,语言是否生动,情感是否充足,板书是否合理等。记得有一次上洋流这一课,课前化了很多时间制作了一个authorware课件,每页背景很鲜艳,有海水运动音乐,整个课件设计为直线型,一直往下讲。虽然有洋流运动的境头,可整节课让人感觉很死板,没有板书设计,交互不强,鲜艳的背景使学生分心。效果还不如没用课件,这节课使我在以后的课件制作时,考虑到实效性,考虑究竟需不需要课件,什么样的课才适合用课件,到底是整个课件好,还是用积件好。记得刚走上讲台时,举例没贴近学生生活,没有典型性,问得不多,老是自己讲,问问题也没有注意情境和层次,教学效果不好。

有理数的乘方教学反思3

  本节课从生活实际出发,根据乘法的意义,具体地阐述了乘方的概念,在教学过程中应用了“自主—合作—讨论—探究—交流”的教学方法,教师始终发挥学生的主体作用,起到一个“引导—帮助—点拨”的作用,较好地做到了由单纯的知识传递者转变为学生学习数学的组织者、引导者和合作者。

  优点:为了体现课堂以学生为主,培养学生自主探究的能力和知识的熟练运用,在课前的教学设计中尽量围绕学生展开。如:

  1、使每个学生参与课堂,采用集体讨论和交流的形式,将个人的经验或成果展示出来,弥补一个教师难以面向众多有差异的学生的不足。在本课中,有很多活动都是采用小组合作的形式,组织学生展开分小组合作讨论活动,要求所有同学把自己的想法都在小组里交流。这样尽可能地将每个人的收获变成学生集体的共同精神财富。

  2、在备课中,我认真备了学生,预设了学生会出现的问题。例如:如何调动学生的积极性?如果我提问“乘方运算与乘法运算有什么关系?”学生能否回答这个问题,不能回答时,我该怎么引导?

  3、在教学过程中,创设实际问题情境,激发学生兴趣,是一节课成功的一半。一开始,我给学生用生活问题导入新课,提出问题:如果一层楼按高3米计算,把足够长的厚0.1毫米的纸连续折叠20次约有104米高,有34层楼高;连续折叠30次后有10万多米高,有12个珠穆朗玛峰高。你相信吗?由此导入新课,激发了学生强烈的好奇心和求知欲;我通过多折纸活动,让学生观察纸的层数的变化过程,列式表示层数,引出乘方的概念;还组织学生观察比较一些算式,猜想得到其中的乘方运算法则.教学时,多次提醒学生:负数的乘方,分数的乘方,在书写时一定要把整个负数(连同符号)分数用小括号括起来;让学生通过观察特例,自己总结规律,学生在计算时出现了各种各样的问题,延缓了教学进程。主要问题有:分数的乘方与分子的乘方也很混淆;还有对有理数的乘法运算,甚至小学的乘法运算学生掌握得不牢固。

  4、教学中,我们要特别强调,强化训练。

  (1)注意区别(-2)3和-23区别。前者代表3个(-2)相乘,后者代表2×2×2的相反数。念法前者可以念做“负2的三次方”,后者可以念做“2的三次方的相反数”。

  (2)为培养学生的数学思维能力,拓宽学生视野,我特意设计了[链接生活]环节,让学生运用所学知识来解决实际问题。

  总之,本节课学生对新知的掌握情况较好,有效地完成了教学目标。通过本课我深深感觉到,教师要调动学生的主动性,正确地认识课堂教学中的师生交流,摒弃虚假,追求真实,努力实施“自主、合作、探究”课堂教学改革,实现课堂教学师生交往的有效化,努力提高课堂教学的效率。

  不足:在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及同年组教师的指点,主要表现在:

  (1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。综合应用部分的练习题处理得很仓促,例题讲解不够细致,板书不够。

  (2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。分工不够明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。

  (3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

  (4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个*常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。


《有理数的乘方》优秀教案3篇(扩展2)

——初中数学有理数的乘方说课稿3篇

初中数学有理数的乘方说课稿1

  教学内容分析:

  《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  教学目标分析:

  (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

  (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法

  (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

  教学重难点分析:

  1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的*方和立方的知识水*,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

  2、教学重、难点

  教学重点:理解乘方定义,会进行有理数的乘方运算;

  教学难点:有理数乘方运算的符号法则的形成与运用

  教法学法分析:

  教法:启发式教学,多媒体辅助教学;

  学法:观察、比较、归纳,合作探究。

  教学过程设计:

  1、创设情境提出问题

  (1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.

  (2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.

  通过创设问题情境,唤起旧知,为学习新知做好铺垫

  2、自主探索形成新知

  观察下列各式有何特征?

  (1)2×2×2×2=

  (2)(-3)×(-3)×(-3)=

  引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

  3、应用新知巩固概念

  练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算

  4、探索研究发现规律

  通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

  5、应用新知巩固训练

  进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

  6、拓展思维知识延伸

  利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

  7、课堂小结归纳反思

  锻炼学生及时总结的良好习惯和归纳能力

  教学评价分析:

  对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

  (1)关注学生的智力参与度

  (2)学生的课堂参与度

  2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

初中数学有理数的乘方说课稿2

  一、教学目标:

  知识目标:让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。

  能力目标:在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。

  情感目标:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。

  1、教学重点:

  有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。

  2、教学难点:

  有理数的乘方符号法则的理解。

  二、说教学方法

  启发诱导式、实践探究式。

  三、说教学设计

  (一)创设问题、引入新知

  a(1)边长为2的正方形的`面积是多少?

  (2)棱长为2的正方体的体积是多少?

  (3)学生活动:

  我们把一张纸对折后裁开,可以裁成几张纸?对折两次后可以裁成几张纸?对折三次呢?

  猜想对折10次后可以裁成几张纸?

  对折20次后的纸张的厚度比我们大唐发电厂的烟囱的高度还高,你信吗?

  学完这节课后,你就知道结果了。

  (让学生思考回答、教师引导、归纳同时板书问题答案)

  学习新知:

  (二)、自主学习新知:

  1、阅读书了解什么是乘方?还有那些新的概念?

  2、同学们想一想?以上乘法与前面学习过乘法有什么不同?

  (让学生观察回答,教师引入乘方、幂、底数、指数的概念、归纳同时板书问题答案)

  板书:求n个相同因数的积的运算叫做乘方。

  乘方的结果叫做幂。

  一个数可以表示成这个数本身的一次方,指数1通常省略不写。

  3、提出问题:到目前为止,对有理数来说,我们学过的运算有哪些?分别是什么?运算结果叫什么?(让学生讨论交流回答,教师板书问题答案)。

  板书答案:

  运算:加、减、乘、除、乘方

  结果:和、差、积、商、幂

  4、检验学习:

  在这里,我设置了三组题,第一组学生组内完成,采用组内互检方式完成。

  第二三组题先由学生独立完成,在由组长检查,并让两名学生到黑板上展示交流,教师给予点评。

  (三)探究乘方的符号法则

  设置了四组习题探究规律:

  1、完成下面的计算:

  22= 32= 43 = 104=

  (-3)2= (-2)4= (-3)4=

  (-3)3= (-10)3= (-2)5=

  02= 03 = 04= 06=

  2、思考:根据上面计算的结果想一想:正数的幂的符号与指数有何关系;负数的幂的符号与指数有何关系?

  师生总结:正数的任何次幂都是正数;0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。

  板书结论:负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数,0的任何正整数次幂都是0

  (四)学习使用计算器计算乘方的方法。

  1、每组一个计算器,教师讲解,学生操作。

  2、解决引例折叠20次后纸张的厚度。如果一张纸的厚度为0.2毫米,试用计算器求出结果。

  (五)小结反思

  通过这节课的学习,你有什么收获?你还有什么疑惑?

  课堂检测、布置作业。

  (目的:为巩固本节所学的知识,了解学生掌握知识的情况及应用知识的能力。)


《有理数的乘方》优秀教案3篇(扩展3)

——有理数的乘方教案 (菁选3篇)

有理数的乘方教案1

  一、学什么

  1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

  2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

  二、怎样学

  归纳概念:

  n个a相乘aaa=xx,读作:xx。其中n表示因数的个数。

  求相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

  例1:计算

  (1)26(2)73(3)(3)4(4)(4)3

  例2:(1)5(2)3(3)4

  【想一想】

  1、(1)10,(1)7,4,5是正数还是负数?

  2、负数的幂的符号如何确定?

  思考题:

  1、(a2)2+(b+3)2=0,求a和b的值。

  2、计算(2)2009+(2)2010

  3、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样:

  (1)某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成

  A8个B16个C4个D32个

  (2)一根长1cm的绳子,第一次剪去一半。第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为

  A3mB5mC6mD12m

  (3)(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

  4、计算

  (1)(3)3(2)(0.8)2(3)02004(4)12004

  (5)104(6)5(7)-3(8)43

  (9)32(3)3+(2)223(10)-18(3)2

  5.已知(a2)2+|b5|=0,求(a)3(b)2.

  2.6有理数的乘方(第2课时)

  一、学什么

  会用科学计数法表示绝对值较大的数。

  二、怎样学

  定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。

  例题教学

  例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。用科学记数法表示这个距离。

  例2:用科学记数法表示下列各数。

  (1)10000000(2)57000000(3)123000000000

  例3、写出下列用科学记数法表示的数的原数。

  2.311053.001104

  1.281038.3456108

  思考:比较大小

  (1)9.2531010与1.0021011

  (2)7.84109与1.011010

  学怎样

  1、用科学记数法表示314160000得

  A.3.1416108B.3.1416109C.3.14161010D.3.1416104

  2、稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为

  A、1.051010吨;B、1.05109吨;C、1.05108吨;D、0.1051010吨

  3、人类的遗传物质是DNA,DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为

  A、3108;B、3107;C、3106;D、0.3108

  4、第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。

  5、比较大小:

  10.91081.11010;1.111089.99107.

  6、用科学记数法表示下列各数。

  (1)32000;(2)-80000000000;(3)2895.8;(4)-389999900000000

有理数的乘方教案2

  学习目标

  知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

  过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

  情感态度价值观:

  鼓励猜想,倡导参与,学会倾听,建立自信心。

  学习重点:理解有理数乘方的意义和表示,会进行乘方运算。

  学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

  学习方法:

  探究归纳法

  过程设计:

  一自主研学

  1、求n个的运算叫做乘方,乘方的结果叫做

  2、在式子an(n为正整数)中,叫底数,叫指数,叫幂。

  3、负数的奇次幂是,负数的偶次幂是,正数的"任何次幂,0的任何次幂。

  二合作互学

  知识点1:有关乘方的概念

  1、(-3)4表示的意义是,,底数是,指数是,结果是

  2、43的底数是指数是,表示的意义是,结果等于。

  知识点2乘方的运算

  3、计算0.0012=;(-?)=

  知识点3乘方的读法

  4、(-2)5读作;-25读作

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的*行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把*行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  三自觉练学

有理数的乘方教案3

  教学目标:

  1、知识与技能:

  了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。

  2、过程与方法:

  在科学记数法中,其中a是整数位只有一位的数,n是原数的整数位数减1。

  重点、难点:

  1、重点:用科学记数法表示绝对值较大的数。

  2、难点:熟练用科学记数法表示绝对值较大的数。

  教学过程:

  一、创设情景,导入新课

  太阳的半径大约是696000千米;光的速度大约是300000000米/秒。这些数读、写都有困难,可把696000记作6.96×105,这就是科学记数法。

  二、合作交流,解读探究

  2、学生探究:从前面的填空可知:

  100=,1000=,10000=280=2.8×,2800=2.8×,28000=2.8×

  从上面你能发现什么规律吗?

  (1)10的指数比原数的整数位少1,一个数可以写成一个整数位数只有一位的数与10的n次幂相乘的形式。

  三、应用迁移,巩固提高

  1、做一做:课本P44例2

  解答见教材,注意10的指数比原数的整数位少1

  2、科学记数法:把一个绝对值大于10的数记成的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。

  3、做一做:用科学记数法表示下列各数:

  (1)108000;(2)-3200000

  两生上台练习,指出学生存在的错误,如对科学记数法中a的要求理解的错误。

  4、P44练习第1、2、3题

  四、总结反思

  用科学记数法表示时要注意:

  (1)a是整数位只有一位的数;

  (2)10的指数n比原数的整数位数少1。

  五、作业:P45习题1.6A组第3、4、5题


《有理数的乘方》优秀教案3篇(扩展4)

——《有理数》教学设计10篇

《有理数》教学设计1

  【教学目标】

  1.会进行有理数加法运算.

  2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.

  3.会将有理数的减法运算转换成加法运算.

  4.会进行加减混合运算.

  此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体

  会“化归”的思想方法.

  【教学过程设计建议(第一课时)】

  1.情境创设

  除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:

  第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?

  如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还

  可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.

  2.探索活动

  (1)需要特别注意的是,算式“( 3) (一2)= 1”

  只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.

  课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后*”,“先*后赢”及“*局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.

  与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然

  后确定输赢球的个数,这是绝对值问题.

  (2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.

  3.例题教学

  例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.

  学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

  【教学过程设计建议(第二课时)】

  1.探索活动

  从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.

  在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.

  此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.

  2.例题教学

  例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.

  【教学过程设计建议(第三课时)】

  1.情境创设

  小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.

  2.探索活动

  (1)用问题串引导学生展开探索活动,例如:

  小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?

  小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.

  小明与小丽的结论相同,是偶然巧合吗?请举例说明.

  (2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.

  3.例题教学

  例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.

  设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的`方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.

  教学中,如有必要可适当补充加、减混合运算的例题、习题.

  4.小结

  除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.

《有理数》教学设计2

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

《有理数》教学设计3

  教学目标

  1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3,体验分类是数学上的常用处理问题的方法。

  教学难点正确理解分类的标准和按照一定的标准进行分类

  知识重点正确理解有理数的概念

  教学过程(师生活动)设计理念

  探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

  问题1:观察黑板上的9个数,并给它们进行分类。

  学生思考讨论和交流分类的情况。

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

  例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。

  看书了解有理数名称的由来。

  “统称”是指“合起来总的名称”的意思。

  试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

  2,教科书第10页练习。

  此练习中出现了集合的概念,可向学生作如下的说明。

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

  思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

  有理数这个分类可视学生的程度确定是否有必要教学。

  应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业

  (1)必做题:教科书第18页习题1、2第1题

  (2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

  2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

  3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

  初中数学教学策略

  一、激发学生的学习兴趣

  兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。

  激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。

  比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的*古代建筑物,比如说故宫的建筑模式。

  二、建立民主*等的师生关系

  素质教育要求师生之间是一种民主*等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是*等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。

  三、建立多元化的教学目标

  教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。

  除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。

  四、总结

  综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主*等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水*,培养出高素质的学生。

《有理数》教学设计4

  《有理数的惩罚》教学设计

  一、学情分析:

  1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

  2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

  二、教材分析:

  教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

  本节课的数学目标是:

  1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

  2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

  三、教学过程设计:

  本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。

  第一环节:问题情境,引入新课

  问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

  (2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

  设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

  第二环节:探索猜想,发现结论

  问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

  (-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

  (-3)×0=_____。

  (2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

  (-3)×(-1)=_____;

  (-3)×(-2)=_____;

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。

  教后事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

  (2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

  第三环节:验证明确结论

  问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

  (—4)×0=_____;

  (—4)×1=_____;

  (—4)×2=_____;

  (—4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

  一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

  教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

  (2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

  (3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

  第四环节:运用巩固,练习提高

  活动内容:

  (1)1。计算:

  ⑴(-4)×5; ⑵(5-)×(-7);

  ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。计算:

  ⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

  (4)计算:

  ⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

  ⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

  教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

  (2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

  (-1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

  第五环节:感悟反思课堂小结

  问题

  1.本节课大家学会了什么?

  2.有理数乘法法则如何叙述?”

  3.有理数乘法法则的探索采用了什么方法?

  4.你的困惑是什么

  教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

  教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

《有理数》教学设计5

  一、课题2.4有理数的减法

  二、教学目标

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力.

  三、教学重点

  有理数减法法则

  四、教学难点

  有理数减法法则

  五、教学用具

  三角尺、小黑板、小卡片

  六、课时安排

  1课时

  七、教学过程

  (一)、从学生原有认知结构提出问题

  1.计算:

  (1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

  2.化简下列各式符号:

  (1)-(-6);(2)-(+8);(3)+(-7);

  (4)+(+4);(5)-(-9);(6)-(+3).

  3.填空:

  (1)______+6=20;(2)20+______=17;

  (3)______+(-2)=-20;(4)(-20)+______=-6.

  在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

  (二)、师生共同研究有理数减法法则

  问题1(1)(+10)-(+3)=______;

  (2)(+10)+(-3)=______.

  教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

  教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;

  (2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

  (2)的结果是多少?

  于是,(+10)-(-3)=(+10)+(+3).

  至此,教师引导学生归纳出有理数减法法则:

  减去一个数,等于加上这个数的.相反数.

  教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

  (三)、运用举例变式练习

  例1计算:

  (1)(-3)-(-5);(2)0-7.

  例2计算:

  (1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

  通过计算上面一组有理数减法算式,引导学生发现:

  在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

  例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

  阅读课本63页例3

  (四)、小结

  1.教师指导学生阅读教材后强调指出:

  由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  (五)、课堂练习

  1.计算:

  (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

  2.计算:

  (1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

  (5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

  3.计算:

  (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

  (4)(-5.9)-(-6.1);

  (5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

  利用有理数减法解下列问题

  4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

  八、布置课后作业:

  课本习题2.6知识技能的2、3、4和问题解决1

  九、板书设计

  2.5有理数的减法

  (一)知识回顾(三)例题解析(五)课堂小结

  例1、例2、例3

  (二)观察发现(四)课堂练习练习设计

  十、课后反思

《有理数》教学设计6

  教学目标

  1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。

  2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。

  3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。

  重点难点重点:了解有理数加法的意义,会根据有理数加法进行运算。

  难点:有理数加法中的异号两数的加法运算。

  教学过程

  教学活动

  师生活动

  设计意图

  一、问题情境

  小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?

  5+3=8

  如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?

  (-5)+(-3)=-8

  如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?

  5+(-3)=2

  足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。

  图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?

  二、知识点拔:

  有理数加法法则:

  1.同号两数相加,取相同符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.

  3.一个数同0相加,仍得这个数。

  三、例题指导

  例1 计算

  (1) (-3)+(-9)

  (2) (-4.7)+3.9

  解:(1)(-3)+(-9)=-(3+9)

  =-12

  (2)(-4.7)+3.9=-(4.7-3.9)

  =-0.8

  四、练习巩固:P22 1、2。

  五、小结:

  这节课我们学习了哪些知识?

  六、作业:

  习题1.3 1、8、12题

《有理数》教学设计7

  一、 知识与能力

  理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

  二、过程与方法

  经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

  三、情感态度与价值观

  通过对有理数的学习,体会到数学与现实世界的紧密联系。

  教学重难点及突破

  在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

  教学准备

  用电脑制作动画体现有理数的分类过程。

  教学过程

  四、课堂引入

  1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?

  2.举例说明现实中具有相反意义的量。

  3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?

  4.举两个例子说明+5与-5的区别。

《有理数》教学设计8

  教学目的:

  1.了解计算器的性能,并会操作和使用;

  2.会用计算器求数的*方根;

  重点:

  用计算器进行数的加、减、乘、除、乘方和开方的计算;

  难点:

  乘方和开方运算;

  教学过程:

  1.计算器的使用介绍(科学计算器)

  初一上册数学一单元教案.png

  2.用计算器进行加、减、乘、除、乘方、开方运算

  例1用计算器求下列各式的值.

  (1)(-3.75)+(-22.5)(2)51.7(-7.2)

  解(1)

  初一上册数学一单元教案.png

  (-3.75)+(-22.5)=-26.25

  (2)

  初一上册数学一单元教案.png

  51.7(-7.2)=-372.24

  说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.

  随堂练习

  用计算器求值

  1.9.23+10.22.(-2.35)×(-0.46)

  答案1.37.82.1.081

《有理数》教学设计9

  【教学目标】

  1.会进行有理数加法运算.

  2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.

  3.会将有理数的减法运算转换成加法运算.

  4.会进行加减混合运算.

  此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体

  会“化归”的思想方法.

  【教学过程设计建议(第一课时)】

  1.情境创设

  除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:

  第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?

  如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还

  可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.

  2.探索活动

  (1)需要特别注意的是,算式“( 3) (一2)= 1”

  只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.

  课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后*”,“先*后赢”及“*局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的"各种情况,提高学生探求运算规律的积极性.

  与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然

  后确定输赢球的个数,这是绝对值问题.

  (2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.

  3.例题教学

  例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.

  学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

  【教学过程设计建议(第二课时)】

  1.探索活动

  从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.

  在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.

  此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.

  2.例题教学

  例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.

  【教学过程设计建议(第三课时)】

  1.情境创设

  小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.

  2.探索活动

  (1)用问题串引导学生展开探索活动,例如:

  小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?

  小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.

  小明与小丽的结论相同,是偶然巧合吗?请举例说明.

  (2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.

  3.例题教学

  例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.

  设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.

  教学中,如有必要可适当补充加、减混合运算的例题、习题.

  4.小结

  除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.

《有理数》教学设计10

  教学目的:

  1.知识目标 使学生了解了负数产生的背景 ,理解正、负数及零的意义,掌握正、负数的表示方法 ,会用正、负数表示具有相反意义的量。

  2.能力 目标 通过 本节教学,培养学生的想象 能力、理论联系 实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;

  3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。

  教学设计

  本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

  重点

  正、负数的意义,

  难点

  负数的意义及0的内涵。

  教学方法:

  鉴于初一年级学生的年龄特点 ,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。

  教学过程的设计,分为四部分。

  一、创设情境,引入负数;

  二、联系对比,突出重点;

  三、课堂练习,及时反馈;

  四、总结提高,渗透德育。

  在引入部分,我通过介绍数的产生与发展 ,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类 的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。

  随之提问:同学们小学都学过哪些数?

  为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。

  那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?

  为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果 ,采取形象化教学。

  (计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海*面8848米,吐鲁番盆地低于海*面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?

  通过创设问题情境,激发学生的求知欲望 让不同水*的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。

  以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?

  使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。

  既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。

  接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在*算时会有更深刻的理解。

  从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海*面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。

  以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。

  在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。

  为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界 中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:

  (1)意义相反 (2)同一种量

  并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。

  由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。

  "+""-"作为性质符号有着更深层的涵义:

  "+"表示与问题中给出意义的相同意义,

  "-"表示与问题中给出意义的相反意义,

  如:前进+5米,表示真正前进5米,

  前进-5米,表示后退5米,

  那么,后退-5米就表示前进5米。并通过课本例2加以巩固。

  为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:

  图中所示是一个零件的剖面图。用φ30±0.07表示轴直径的误差范围,说明±0.07的意义。

  因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0.07表示比30mm大0.07mm,-0.07表示比30mm小0.07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。

  接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水*的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。

  在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。

  在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于*的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。

  通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。


《有理数的乘方》优秀教案3篇(扩展5)

——《有理数乘法》教学反思3篇

《有理数乘法》教学反思1

  本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用。

  对经历有理数乘法法则的`探索过程,使学生体验分类讨论的数学思想方法。在教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力。

  本教学设计教学目标明确、重难点突出,符合新课程的要求。我在备课时,钻研教材,从学生的认知水*和基础出发,精心编写学案,力求让每个学生在数学课上都能学习有价值的数学。以一个生动的例子引入课题,使学生对有理数乘法有较好的认识,达到在观察中感受、在尝试中探索、在练习中发现、并自主归纳的目的。学生刚认识“负数”这个新朋友,在有理数加减混合运算后,学习有理数的乘法,会有一定的困扰。

  预期学生会在符号上出现问题,故在学案的编写中,注意这个环节的设计,让学生在课堂上最大限度的把问题呈现,我及时发现并纠正这些问题,体现为每一个学生着想的理念。一节课下来,学生从生动有趣的“蜗牛爬行”例子入手,初步掌握有理数乘法法则的关键所在——符号的确定,然后就都是小学的乘法知识,使学生在轻松愉快的氛围下自主学习。

  同时,根据学生的个别差异,有效地进行分层,完成强化练习,有效地开展课内技能训练。本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。

  本节课特别注重过程教学,有利于培养学生的分析归纳能力。对有理数相乘法则的探究过程中,运用了分类的数学思想和方法,体现了数学建摸的过程和数学与生活的密切关系,兼顾思想、方法和趣味。例题,练习以及思考探究题目的选择,兼顾了不同层次学生的思维水*,学生在讨论发言中的各种灵活方式成为课堂上的亮点。

  本节课在新课引入和法则探究两个教学环节中,我的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

  本节课主要不足体现在:在探究法则的过程中,尽管在情景中的实际含义是由学生完成的,但教师的教学痕迹还是比较明显,可以更加开发一些;探究的程度不够。让学生过早的打开教材,学生过早的了解到了法则,在这方面处理的不适当。课堂组织语言还有待加强,课堂组织的不够严谨,有点松弛。对学生灵活方法的鼓励和及时评价,还要进一步提高。


《有理数的乘方》优秀教案3篇(扩展6)

——《有理数》教学反思3篇

《有理数》教学反思1

  本节是在学习有理数加.减.乘.除.乘方的基础上。引入了有理数的混合运算,学生通过讨论、理解有理数混合运算顺序,掌握有理数混合运算.它是有理数运算的推广和延续。

  本节课的重点是能熟练的按照有理数的运算顺序进行混合运算。难点是在正确运算的基础上,适当的运用运算律简化运算。首先,我先复习了运算律,既是对上节的复习,又对这节学习作铺垫。又通过详细分析了例题,小组讨论。学生自主学习,使他们更明确了运算顺序,进行有理数运算,培养了学生自主探究的习惯。第三,在例题的讲解中穿插了让学生自己动手锻炼的过程.及时的反馈学习情况.最后,通过“算24点”游戏,创设良好的氛围,让学生动脑动手动口,不仅可以提高学生学习兴趣,训练学生的思维,还可以培养学生的数*算能力和数学表达能力.

  课后的专家的对教学过程和课堂的学生的学习效果进行了肯定,同时也提出了建议,希望根据学生的实际情况,将例题的难度降低,让学生能更好的适应.

  本次活动,无论是课上,还是课后的研讨,老师们都表现出高度的热情,整个研讨过程都呈现出浓厚的氛围。通过本次活动,锻炼和提高了我们的教学能力,相信通过坚持不懈地实践,我们教师的专业成长步伐会更快!

《有理数》教学反思2

  本节课从实际问题(温度差)出发,创设教学情境,调动学生学习的兴趣和积极性。并由小学学段的“被减数-减数=差”的知识引导学生思考有理数的减法的计算方法。

  4-(-3)=7(1)4+(+3)=7(2)4-(-3)=4+(+3)

  通过对比三个式子使学生思考减法计算,引导学生自己举出几个例子来验证下减法的计算方法,使学生在计算中发现,总结出有理数减法法则:减去一个数,等于加上这个数的相反数,使学生亲身体验知识的形成过程,感悟数学的转化思想。本课改变了以往学生被动学习,被动接受知识的局面。但学生的认知水*毕竟存在差异,从学生的练习来看,大部分学生都掌握了有理数的运算法则,但还有些学生在将减法转化为加法时,总弄不清该减去哪个数的相反数,有的甚至把被减数也改变符号,特别是减去一个正数时,往往又再加上该正数,如误解——=—+。因此,给学生总结了a-(+b)=a+(-b)指导学生观察式子,发现在有理数减法的计算中,要把减法变成加法,需要改变的符号有两个,首先把减号变成加号(变加法),然后要把减数变成其相反数。

  存在问题:

  1.讲解稍微有点多,在本节课上,重在学生练习,本节课老师应该要讲的内容尽量缩短,一般控制在10-15分钟即可;

  2.对于例题的处理方式应改进。

《有理数》教学反思3

  我校的多媒体教室终于建成了,怀着迫不急待的心情,我尽我所有的电脑知识,精心制作了课件,准备在多媒体教室上一节课来感受一下现代的科学技术所带来的好处。哪知天不遂人愿,我遭遇到这学期以来教学上给我的第一次打击。

  以下是这节课教学中的两个片断:

  片断1

  我问学生:阅读教材第一、二两段,并思考后面的“想一想”,你能用等式类似的表达净胜球的个数吗?

  (很长时间后也没有人作答)

  (我估计学生不明白什么是“净胜球”,马上进行说明)

  我:先赢一个球,再又输一个球,最终赢了球没有?。

  生答:没有。是*局。

  (几乎是异口同声)

  我:把*局记为0,现在你能用等式表达净胜球的个数吗?

  一生答:(-1)+(+1)=0

  好!学生答出了我想要的结果,我马上用课件展示:

  我问:后面的两个算式分别表示什么意义?你能得到这两个算式的结果吗?

  (还好,马上就有人举手,我暗自庆幸)

  一生答:第一个算式表第一场比赛输了3个球,第二场比赛赢了2个球,净胜球的个数为-1,也就是输了一个球。

  一生答:第二个算式表示第一场比赛赢了3个球,第二场比赛输了两个球,净胜球的个数为1,也就是赢了一个球。

  片断2

  为了让学生探索异号两数相加的.规律,进行了以下过程

  课件展示:

  我问:观察数轴1,先向东运动3个单位,再和西运动两个单位,结果是怎样的?用算式怎样表示?(向东记为“+”,向西记为“-”)

  一生答:3-2=1

  我问:3减2吗?向东记为正,向西记为负,应怎样表示?

  一生答:3-(-2)=1

  我问:3减负2吗?两次运动的结果用什么运算?

  一生答:3+(-2)=1

  (谢天谢地,总算有人回答对了,我暗自松了一囗气。)

  我问:观察数轴2,先向西运动3个单位,再向东运动2个单位,结果怎样表示?

  一生答:(-3)+(+2)=-1

  我问:两次运动方向一致吗?最后的结果相同吗?

  一生答:两次运动的方向不一致,结果也不相同。

  我问:3+(-2)=1(-3)+(+2)=-1这两个算式结果的符号有何特点?

  一生答:两个结果的符号都与第一个加数的符号相同。

  (糟,学生答出了我不想要的结果,怎么回事,我仔细一看幻灯片,呀,我怎么犯了这样一个非常明显的错误?)

  我问:+3与-3作为加数在两个加法算式中还有何特点?

  一生答:它比2大。

  我问:应该说,正3与负3的什么值都比2的什么值大?

  一生答:绝对值较大。

  …………

  (转了一大圈,终于回到我想要的答案上来了,但此时一节课只有五分钟了,真失败啊!)

  因为时间关系,本课的随堂练习没有时间完成,只刚把异号两数相加的法则归纳出来就下课了,远没有完成计划中的任务。

  自以为应该是很成功的一节课却感到寸步难行。回顾本节课,问题究竟出在哪里呢?通过仔细思考,我认为存在的有以下几方面的问题。

  1.没有正确的把握好教材,是片断1失误的主要原因。

  如情境的引入要恰当。如本节中“净胜球”学生就不懂,如无事先进行补充说明,学生就不懂,导致一节课的进度一拖再拖。必须让学生所接触的例子和我们的生活密切相关,这样才能更易为学生所接受。回顾这一整节课,其实还有很多可以对教材进行发掘的地方,如在数轴上的运动问题,也可以是让学生在一条直路上运动,这样可能让学生更有兴趣,再用数轴进行抽象,可能效果会更好。

  《*行》这一节中所提到的滑雪运动最关键的是要保持两只雪撬的*行,这一知识点对于我们这里的孩子是非常陌生的,我们都没见过雪撬,更谈不上其技巧了。

  用过新教材的同行们都说,一节课完后不知这节课都在干什么!我也常有这种想法,教材是专家们研究实验过的,专家是干啥的?现在痛定思痛,实际上是我们对新教材把握不够,没有搞清其重难点,没有把握教材的真正要求。虽然我们天天在谈、天天在写“目标”“重点”“难点”,但实际上仅仅是在写而已。实际情形往往是这样:由于我们教学多年,大都只凭我们以往的经验来“把握”教材,凭我们过去所了解的重难点、教学方法、教学模式来引导我们、来确定组织教学,实质是用老教法来教新教材。所以一节课下来我们自己都不知干了些什么!实际上只要我们真正掌握了其教学要求,把握了新教材的内涵、我们的思路清醒,方向明确,就知道自己应该怎样做。

  2.备课粗枝大叶,造成一些不应有的失误。

  如在片断2中,由在数轴上先后两次不同方向的运动,得到两个算式:

  3+(-2)=1(-3)+(+2)=-1

  教师:这两个算式结果的符号有何特点?

  生答:两个结果的符号都与第一个加数的符号相同。

  学生的回答非常正确,而且是经过仔细观察后回答的,但我的本意是要把绝对值较大的数放在不同的位置让学生来观察、归纳的。这实际上是备课工作中的马虎大意引起的,备课缺乏深度。备课以及课堂中要尽量避免人为地给学生带来的错误导向。

  3.教学语言单调、生硬缺乏启发性、激励性。

  课堂上,我十分吝啬“请”“请坐”及一些称颂学生的语言,认为自己天天在说没有必要,在一定程度上就变相抑制了学生的积极性,尤其是对差生而言,他们是进行课堂学习的“学困生”更需要我们的肯定和赞扬,每一次真心的赞扬可能都会给他们带来一次新的进步。

  教学语言是决定教学效果好坏的一个重要环节。教学语言活泼风趣、幽默可以活跃课堂气氛,调动学生的学习热情。常言道“亲其师、信其道”,语言是让学生对教师产生亲切感的一个重要渠道。启发性的语言能使学生顺理成张的回答教师提出的问题,不需要绕太多的圈子,具有点石成金的功效。通俗易懂的语言可以让学生学得轻松自然。激励性的语言则帮助学生树立学习信心、肯定了他们的学习成果,让他们时时能找到自己的价值,尤其是对“学困生”更要让他们找到自己身上的闪光点,提高他们的学习兴趣,充分发挥语言评价的功效。


《有理数的乘方》优秀教案3篇(扩展7)

——《有理数的乘法》说课稿

《有理数的乘法》说课稿

  作为一名人民教师,常常需要准备说课稿,编写说课稿是提高业务素质的有效途径。那么优秀的说课稿是什么样的呢?以下是小编精心整理的《有理数的乘法》说课稿,希望对大家有所帮助。

《有理数的乘法》说课稿1

尊敬的各位评委、老师、亲爱的同学们:

  大家好,我是1号选手,今天我说课的内容是新课标人教版七年级上册第一章第四节的内容《有理数乘法》,我将从以下几个方面进行说课。

  一、教材分析

  (一)教材的地位与作用

  有理数的乘法是在引入了负有理数以及学过有理数的加法之后学习的。它与有理数加法运算一样,是建立在小学算术的基础上。因此,有理数乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。

  (二)学情分析

  1、学生在小学的学习中已经熟练掌握了两个正数之间、正数与零之间的乘法运算。

  2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。

  3、在学习有理数加法法则的过程中,学生已经尝试了借助数轴来分析问题的方法。

  根据课程标准对本节教学内容的要求和学生原有的知识经验及认知规律,确定如下教学目标:

  (三)目标分析

  1、知识与技能目标

  掌握有理数乘法的意义和法则,能熟练运用有理数乘法法则进行乘法运算。

  2、过程与方法目标

  通过对实际问题的观察、分析、操作概括等活动,经历对有理数乘法法则的探索过程,培养学生的分析概括能力。

  3、情感态度与价值观

  激发学生学习兴趣,培养学生化归及分类讨论思想和勇于探索的精神。

  (四)教学重、难点分析

  根据本节课的内容和学生的认知发展水*,确定本节课的重点是:掌握有理数的乘法法则,会进行有理数的乘法运算。难点是:有理数的乘法法则的探索和对法则的理解。

  (五)教法和学法

  《新课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用“引导——探究法”组织教学。同时鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。

  二、教学过程

  基于上述思想,为了有效的突出重点,突破难点,实现知识的“再创造”,本节课的教学过程我设计了如下几个环节:

  第一个环节:创设情境,提出问题。

  对于引入课题,我采用回顾乘法的意义,要求学生把几个相同负数的连加,写成乘积的形式并口答,这时只引入异号两数相乘的情况,缺少两个负数相乘以及0与负数相乘这两种类型。接着提出问题:你能给出下列各式的结果吗?两个有理数相乘有几种情况?

  回顾复习以前的相关知识,由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能够形成知识迁移,做好中学与小学知识的衔接,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到新的探索活动中就过来。

  第二个环节:类比感知,归纳结论。

  根据七年级学生形象思维能力强,而抽象思维能力还在形成的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:蜗牛问题,建立模型,探索规律,归纳法则这样四个层次,来逐步展开对课题的探究。这样可以更好的展示知识的形成过程;更好的突出重点,突破难点;可以减轻学生对法则的理解难度。

  1、蜗牛问题

  第一步,借助多媒体,出示“蜗牛问题”。用多媒体课件演示一只蜗牛在直线L上,沿着一定的方向,以每分钟2cm的速度爬行,要求学生根据多媒体演示,直观感受蜗牛最后所在的位置,然后回答4个问题,如果蜗牛一直向右爬行,3分钟后它在什么位置?蜗牛一直向左爬行,3分钟后它在什么位置?蜗牛一直向右爬行,3分钟前它在什么位置?蜗牛一直向左爬行,3分钟前它在什么位置?通过演示,学生很容易就能看出各种情况下蜗牛最后所在的位置,因此我打算指名学生回答,并对回答正确的学生给予一定评价。本环节动画演示,激发学生的学习兴趣和探究欲望,但是学生的这种认识是直观的,感性的,需要一定的理性思维作支撑,因此,我进入下一个环节————建立模型。

  2、建立模型在本环节中,我给与学生充分的合作交流、自主探索的时间和空间。通过创设情境、设置问题并用课件向学生演示蜗牛在直线上的运动过程,激发学生的学习兴趣。而且设置了四个问题:第一个问题,可以看成是与以前学过的乘法一样,学生容易理解。第二个问题中,结合有理数加法时的讲法,向右为正,向左为负,很容易得出负数与正数相乘结果。第三个问题是关键,在这个问题中,对于时间规定了现在前为负,有了这个规定,就可以得出正数与负数相乘的结果。此难点一但突破,第四个算式学生通过类比,也就迎刃而解了。

  这样设计符合七年级学生的心理特点,易引起学生的学习兴趣。在此教学活动中我以学生的发展为本,让学生经历探索的过程,培养学生把实际问题抽象成数学问题的能力和自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法算式的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。接着我引导学生进入第三步:探索规律。

  3、探索规律

  通过对建立模型中4个问题的解答,学生对有理数乘法有了一定的认识,接着让学生根据自己对有理数乘法的思考,填空:让学生清楚同号相乘,积的情况以及异号相乘,积的情况,并且明确乘积的绝对值等于各乘数绝对值的积。

  在上面的问题中只涉及到同号两数相乘与异号两数相乘,于是我又设置了想一想。新课程标准指出:“要让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程。”启发学生探索有理数中的特殊数“0”与其他数相乘的规律,以此引导学生运用数学模型解决实际问题、通过前面问题的解决,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我进入第4个环节:法则归纳。让学生对有理数乘法法则进行归纳,以填空形式引导学生对照实例自主完成。进一步引导学生观察积的符号的特点,师生共同归纳出有理数的乘法法则。

  4、归纳法则

  你能概括出有理数的乘法法则吗?归纳:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。(多强调)

  由于学生刚接触负数,对负数的意义理解不深,计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及想一想,让学生能准确的运用法则进行有理数的乘法运算,并清楚运算时的几个步骤、然后引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。通过这些层层设置的问题,引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力、在探究归纳的过程中,也培养学生类比和分类讨论的思想,以及从特殊到一般的思想,并渗透数学建模的思想方法。

  第三个环节:知识运用,加深理解。

  1、运用法则进行计算

  在知识运用,加深理解这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数、

  2、运用法则解决实际问题

  有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,每登高1km的气温变化量为—6℃,攀登3km后,气温有什么变化,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,让学生体验到数学来源于生活又服务于生活的数学理念,培养了学生的应用意识。

  两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高兴了学生学习兴趣,培养了学生严谨的数学思维习惯。

  为了充分挖掘了学生的思维潜能,我设置了变式训练,拓展思维这一环节、第四个环节:变式训练,拓展思维。

  通过变式训练题,进一步加深了学生对有理数乘法法则的理解与应用,使学生的学习巩固过程成为再深化、再创造的过程。第1题的6个计算是对法则进行巩固;第2题是对法则运用的巩固;第3个问题让学生给出乘积为—20的乘法运算的式子,很多学生会给出(—5)×4=—20或者4×(—5)= — 20等异号两数相乘的式子,但也有很多学生会给出三个或者三个以上数相乘的式子,此时,教师给予高度评价。这种开放性的试题,让不同学生的思维潜能得到展示,体现了“不同的人在数学上得到不同的发展”的数学理论。

  接着在思考题中让学生独立思考、分组讨论,完成填空,进一步培养学生的合作意识,使学生有效的理解本节课的难点。

  最后利用摸牌游戏,激发学生的学习兴趣,抓住学生对竞争充满兴趣的心理特征,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。

  第五个环节:总结收获,畅谈体会。

  在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。

  及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法,同时培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。

  第六个环节:布置作业,巩固深化。

  新课程强调发展学生的数学交流能力,我用小日记给学生提供一种表达数学思想和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。必做题和选做题,体现分层教学,让“不同的人在数学得到不同的发展”,从而让学生巩固本节所学知识,并能解决实际问题。

  本节课我的板书设计是这样的,这样板书一目了然,直观形象,达到了教学的目的。

  三、教学反思

  在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。

  我的说课到此结束,恳请各位专家批评,指正。谢谢大家!

《有理数的乘法》说课稿2

  教材背景:本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现"把一个因数换成它的相反数,所得的积是原来积的相反数".接着安排了"试一试"让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。并配有例习题让同学理解应用此法则。最后通过练习3让同学想一想找规律,得出一个数与1及-1相乘积的特征。整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。

  知识目标:掌握有理数的乘法法则并会运用它进行计算。

  能力目标:学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。

  情感目标:会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。

  两个有理数相乘的符号法则和有理数乘法法则的得出及应用。

  从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。

  因本节课教学内容较简单,练习量不多。为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的`乘法例型,增设了不同层次的思维训练题组A与思维训练B.

  遵循新教改提倡的"以学生为主体"的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了"发现、探究法""分层递进法""分组学习""合作与交流"等有利于学生学习教法与学法。

  多媒休课件

  (一)看公益广告,渗透环保思想,引入新课。

  1、复习简单的算术数乘法

  (1)计算48×1/2, 5/12×3/5,

  (2)全世界每分钟砍伐森林30公顷,*均每年减少的雨林面积为750万公顷。50年后全世界将减少雨林面积多少公顷?

  (引入环保问题,放映公益广告,激发学生学习数学的兴趣,增强学生的环保意识。)

  (3)你会计算(-3)×(+2),(-3)×(-2)吗?由此引出正数与负数相乘,负数与负数相乘怎么乘,设置悬念,提出本节课要解决的问题。

  (二)创设问题情景,建立数学模型,探究新知。

  1、老虎从东西方向的直道上以每分钟100米的速度前进,请同学确定

  (1)向东走2分钟后老虎位于原来位置的哪个方向?相距多少米?

  (2)向西走2分钟后老虎位于原来位置的哪个方向?相距多少米?

  从此问题情景建立数学模型,让同学画数轴写出算式:100×2=200,(-100)×2=-200.

  2、把问题1中的"老虎从东西两个方向以每分钟100米的速度前进"改为"一只小虫从东西方向的跑道以每分钟3米的速度前进",结果有何变化?大家写出算式:(+3)×(+2)=6,(-3)×(+2)=-6比较这两个算式,有什么发现?

  当我们把(+3)×(+2)=6中的一个因数"3"换成它的相反数"-3",所得的积是原来积"6"的相反数"-6".再看上一题得到的算式100×2=200,(-100)×2=-200,一般地, "一个因数换成它的相反数所得的积是原来积的相反数".

  3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。

  4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:"同号得正,异号得负"进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示"两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零".随后应用此法则计算,讲解课本上的P51例题。

  例1(1)(-5)×(-6);(2)(-1/2)×1/4;并补充(3)

  解:(1)(-5)×(-6)=+(5×6)=30;

  (2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;

  (3) =-(5/3×12/5)=-4

  强调学生应用乘法法则时注意两点

  (1)先确定积的符号

  (2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。

  (三)小组交流,练习巩固,演绎应用所学的知识。

  让同学做书上的配套练习P52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的喜悦。

  (四)分层次思维训练,使不同的学生得到不同的发展。

《有理数的乘法》说课稿3

  一、教材分析

  本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。

  二、学情分析

  学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:

  (1)学生有理数乘法的法则、运算律记忆不牢固;

  (2)在实际做题中不能灵活运用乘法运算律;

  (3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。

  三、设计思路

  本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。

  四、教学目标

  按照课程标准,本节的教学目标如下:

  1、知识与技能

  熟练有理数的乘法运算并能用乘法运算律简化运算。

  2、过程与方法

  让学生通过观察、思考、探究、讨论,主动地进行学习。

  3、情感态度与价值观

  培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。

  五、教学重点和难点

  教学重点:

  运用运算律,使运算简化

  教学难点:

  正确运用运算律,使运算简化

  六、教学方法

  教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。

  学法:

  小组合作探究法:

  以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。

  七、教具及电教手段

  电子白板、多媒体课件

  八、教学过程

  一、做练习复习乘法法则导入

  在做练习时我们看到如果像小学一样能利用乘法的交换律和结合

  计算:

  (1)5×(—6);(4)(—6)×5;

  (2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];

  (4)5×[3+(—7)];(5)5×3+5×(—7).

  教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.

  二、探究学习乘法运算律:

  (1)乘法交换律

  文字叙述:两个数相乘,交换因数的位置,积不变。

  代数式表达:ab=ba。

  (2)乘法结合律

  文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

  代数式表达:(ab)c=a(bc)。

  (3)乘法分配律

  文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  代数式表达:a(b+c)=ab+ac。

  提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?

  答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。

  提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?

  答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;

  乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;

  分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。

  继而教师作如下小结:

  (1)小学学习的乘法运算律都适用于有理数乘法。

  (2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。

  三、课堂练习

  计算(能简便的尽量简便):

  (5)(—23)×(—48)×216×0×(—2);

  (6)(—9)×(—48)+(—9)×48;

  (7)24×(—17)+24×(—9).

  四、小结

  教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.

  五、练习设计

  1.计算:

  (7)(—7。33)×42。07+(—2。07)(—7。33);

  (8)(—53。02)(—69。3)+(—130。7)(—5。02);

  六、布置作业:

  《伴你学》有理数的乘法第二课时

  九、板书设计:

  (一)乘法交换律:a×b=b×a

  乘法结合律:[a×b]×c与a×[b×c]

  乘法分配律:(a+b)×c=a×c+b×c

  (二)典例示范:

  十、教学反思:

  在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。

  本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。

  为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。

《有理数的乘法》说课稿4

  本节课选自上海市二期课改新教材数学六年级第二学期第五章:有理数5.6节有理数乘法的第一课时.

  从以下四个方面:教材分析教材处理教法和学法教学过程向大家介绍我对本节课的理解..

  教材分析

  1.本节在教材中的地位和作用

  有理数的减法和除法是通过转化为有理数的加法和乘法来进行计算的,所以加法和乘法的运算是有理数运算中的重点部分。本节内容是培养学生计算能力的一个重要环节,与今后学习的有理数的混合运算、实数运算、代数式的运算、解方程以及研究函数等内容密切相关。

  有理数乘法分为2课时,第一课时着重研究有理数乘法的法则,使学生通过实际问题的探讨来接受乘法法则的合理性,让学生感知到数学知识来源于生活并应用于生活。同时培养了学生的分类研究意识和抽象概括的能力,也为后面学习的乘方和混合运算打下了好的基础。

  2.教学目标

  教学大纲中要求学生理解有理数的乘法法则,学会运用法则准确运算。同时结合二期课改的理念:培养学生的数学能力,确定如下的教学目标。

  1)知识与技能目标:理解有理数乘法法则,会利用法则进行乘法运算。培养学生的运算能力

  2)过程与方法目标:通过探索有理数乘法法则的过程,培养学生观察、归纳、概括能力。学习分析问题时分类研究、举例验证和抽象概括的方法。

  3)情感态度与价值观:感受法则与生活的密切联系,理解有理数法则的合理性,激发学生对数学学习的兴趣、对生活实践的积极态度。

  3)教学重点和难点

  预备年级这一阶段的学生很难把握学习内容的主要特征,往往对法则的理解和运用有很大的困难,因此本节的重点和难点确定为:

  教学重点:理解和运用有理数的法则

  教学难点:有理数乘法中符号的法则

  教材处理

  本节结合课本中的行程问题的实例,配合多媒体的运用,把问题直观形象的展现在学生面前,通过直观的教学方式,让学生参与进来,通过学生的试验---观察---感性认识----理性认识的探究过程获取运算法则的知识,这一过程能使学生更加体会到数学贴近生活,理论来自于实践,在探究中能感受到“数”“形”结合的数学思想。

  在法则的运用上利用课本上的练习达到熟练法则的目的,通过变式训练的配备达到提高学生能力的目的,在课堂中适当安排学生遍题互测的环节,更能调动学生学习的积极性,活跃课堂的氛围。

  教法和学法

  在教学过程中,要注重教师的导向作用和学生的主体作用,通过直观形象的教学方式吸引学生成为知识的发现者,为学生创设良好的动手、动脑的机会,为学生的自主探究、自主学习提供了一个好的环境,使其在学习知识的同时得到能力上的提高。

  教学过程

  教学环节教学设计设计意图引入问题:结合小学的知识说出两个有理数乘法运算的情形?(正×正正×0 0×0正×负负×负)创设情景,引入新课,探索新知,培养学生思维的有序和全面性。

  新课讲解

  一、探索规律演示课件:通过行程问题的实例,用时间、速度、位置三者之间的关系来为上诉几种情况的有理数相乘的例子编排实际的情形。结合课件的演示师生共同分类探究列出几种算式。增强探索法则的直观性,促进学生对法则的感性认识,使学生感受到法则的合理而自然的接受,培养分类探究的意识和分析观察的能力。

  二、概括归纳结合上面所得出的几种算式,观察每个式子中的两个因数及积的符号,学生通过观察、讨论得出有理数的乘法法则进一步感受有理数的乘法法则,提高学生的归纳总结能力,和运用数学语言的表达能力

  三、例题讲解及变式训练通过例题的示范,规范书写的形式,熟练法则的运用。通过变式训练(结合自己的学生的实际情况设置)提高学生对法则的应用水*和运算能力。

  四、自主小结五、作业的安排板书设计5.6有理数的乘法

《有理数的乘法》说课稿5

  各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;

  一。教材分析;

  (一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;

  (二)教学目标分析;

  1、知识与技能目标:借助实际情境,使学生理解有理;

  2、方法与过程目标:让学生经历有理数乘法法则的探;

  3、情感﹑态度与价值观目标:通过学习

  2.8. 有理数的乘法(第一课时)

  各位专家,各位同仁 :

大家好!

  我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节"有理数的乘法".第一课时。我将从以下四个方面谈一谈这节课的教学设计。

  一。教材分析

  (一)教材的地位与作用

  本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解"类比和化归"这些重要数学思想,应用"不完全归纳法",发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。

  (二)教学目标分析

  1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。

  2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。

  3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。

  (三)教学重、难点及成因分析

  教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。

  教学难点定为:有理数的乘法法则的探索和对法则的理解。

  为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。

  二、教法、学法分析

  (一)、学情分析

  1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。

  2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。

  (二)、教法分析

  《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用"引导——探究法"组织教学。

  (三)、学法指导

  本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。

  三、教学过程分析

  我根据数学课程"倡导积极主动,勇于探索的学习方式"的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:

  1.直接提出问题:你能给出下列各式的结果吗?

  (1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。

  2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。

  (二)自主探究,归纳结论

  根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。

  1.出示问题 ,建立模型

  问题1. 议一议

  (-3)×4= -12

  (-3)×3=

  (-3)×2=

  (-3)×1=

  在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。

  问题2:①你知道(-3)×0的结果吗?

  ②如何用水位的变化来解释(-3)×0= 0 ?

  通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。

  问题3.认真观察上述5个算式,其中包含什么规律?

  此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.

  上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。

  2. 独立思考,探索规律

  问题4.猜一猜

  (-3)×(-1)=

  (-3)×(-2)=

  (-3)×(-3)=

  (-3)×(-4)=

  由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:"现在前"为负,"现在后"为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。

  这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。

  问题5.你能猜出 3×(-2)的结果,并解释理由吗?

  通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。

  本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。

  接着我引导学生进入第三步:归纳总结,得出法则。

  3、归纳总结,得出法则

  完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:

  由于学生对负数的意义理解不深,()计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。

  通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。

  (三)知识运用,加深理解

  1、运用法则进行计算

  在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘

  可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。

  2、运用法则解决实际问题

  有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,

  让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。

  两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。

  (四)变式训练,拓展思维。

  通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了"不同的人在数学上得到不同的发展"的理念。

  (五)回顾反思,感悟提升。

  在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。

  (六)布置作业,延伸知识。

  数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:

  分层设置作业,兼顾了不同学生的学习水*,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻"用数学的眼光"来观察生活。

  四、教学反思

  最后,对这节课我做了如下的反思:

  在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。

  我的说课到此结束,恳请各位专家批评,指正。谢谢大家!

《有理数的乘法》说课稿6

  我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:

  一、 教材分析:

  1. 教学内容:

  本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。

  2. 教材地位和作用:

  “有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。

  二、 教学目标:

  1. 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。

  知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。

  2. 教学重难点:

  本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。

  三、 教法与学法:

  1. 教法:

  采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。

  2. 学法:

  事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。

  四、 教学过程分析:

  1. 导入过程:

  利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的乘法知识,为后面学习负有理数的乘法做铺垫。

  2. 探索新知过程:

  首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。

  对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:例1是两个数相乘的,(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。

  对于乘法中确定符号的问题,我引导学生通过对例题中式子的观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。

  3. 随堂练习:

  在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。

  4. 小结:

  以提问的形式大致回顾本节所学的内容,主要问了三个问题:

  (1) 这节课我们主要学习了些什么内容?

  (2) 有理数的乘法法则是什么?

  (3) 什么样的数互为倒数?

  5. 作业:

  作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。

  6. 自我评价:

  这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。

  当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。

  另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!

《有理数的乘法》说课稿7

  我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。

  一、教材分析

  1、教材的地位和作用

  有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。

  2、教材的重点和难点

  本节课的重点是有理数的乘法法则。这是因为:

  (1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。

  (2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。

  本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。

  二、教学目标

  1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

  2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。

  3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。

  三、教学方法

  本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。

  四、学法指导

  通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质。

  五、教学程序设计

  本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。

  以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:

  (一)创设情境、引入新课

  教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,……于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。

  (二)观察——猜想

  这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。

  意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。

  (三)探究——验证

  教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。

  (四)比较——提炼

  在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。

  (五)分析法则、掌握实质

  教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。

  (六)应用——巩固:

  例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的知识由可以使学生体会学习数学成功的喜悦。

  (七)小结——反思这一环节我设计了三个问题:

  1、本节课你学到了什么?

  2、本节课你有何收获?

  3、你还有什么疑问?

  目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。

  (八)作业——延展

  为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。

《有理数的乘法》说课稿8

  一、说教材:

  (一)地位、作用:

  本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。

  (二)教学目标:

  1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力

  2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率

  3、能运用乘法运算律简化运算,进一步提高学生的运算能力

  (三)重点、难点:

  运用乘法的运算律进行乘法运算

  运用乘法法则和乘法运算律进行运算

  二、说教学方法:

  根据本节教材内容和学生的实际水*,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  三、说学法:

  根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

  四、说教材程序:

  第一步

  现在用我们所学的知识,大家解一下这几道题:

  6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。

  乘法的交换律:两个数相乘,交换因式的位置,积不变。

  ab=ba第二步

  现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律

  乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练

  (-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步

  大家再试试这2道题

  (-4+5+1)×6 -4×6+5×6+1×6你发现了什么?

  一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。

  乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法

  例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法

  解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦

  技能训练,先动手试一试,再讲解

  70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+41)解:原式=(30-1/25)×5解:原式=20×5+1 =14 ×200 =30× 5-1/25× 5 =101 =2800 =150-1/5

  三、巩固训练,熟练技能=149 4/5 30×(1/2-2/3+0.4) 5 24/13×12 19 23/24×24 (1/3 + 1/4 - 1/2) ×12

  四、布置作业P33练习

  新课堂作业P20第8题


《有理数的乘方》优秀教案3篇(扩展8)

——有理数乘方说课稿 (菁选2篇)

有理数乘方说课稿1

  教学内容分析:

  《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  教学目标分析:

  (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

  (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法

  (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

  教学重难点分析:

  1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的*方和立方的知识水*,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

  2、教学重、难点

  教学重点:理解乘方定义,会进行有理数的乘方运算;

  教学难点:有理数乘方运算的符号法则的形成与运用

  教法学法分析:

  教法:启发式教学,多媒体辅助教学;

  学法:观察、比较、归纳,合作探究。

  教学过程设计:

  1、创设情境提出问题

  (1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.

  (2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.

  通过创设问题情境,唤起旧知,为学习新知做好铺垫

  2、自主探索形成新知

  观察下列各式有何特征?

  (1)2×2×2×2=

  (2)(-3)×(-3)×(-3)=

  引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

  3、应用新知巩固概念

  练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算

  4、探索研究发现规律

  通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

  5、应用新知巩固训练

  进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

  6、拓展思维知识延伸

  利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

  7、课堂小结归纳反思

  锻炼学生及时总结的良好习惯和归纳能力

  教学评价分析:

  对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

  (1)关注学生的智力参与度

  (2)学生的课堂参与度

  2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的`学生知识技能的发展。

有理数乘方说课稿2

各位领导、各位老师:

  上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。

  今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。

  一、 教材分析

  1、教材的地位与作用:

  有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

  2、教学目标:

  根据新课标的要求及七年级学生的认知水*,我将制定本节课的教学目标如下:

  ⑴、知识与技能:

  让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

  ⑵、过程与方法:

  在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

  ⑶、情感、态度和价值观:

  让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

  3、教学重点与难点:

  有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

  二、教法学法

  1、学情分析:

  在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。

  在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

  在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

  2、教学策略:

  根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学*台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

  三、教学过程

  1、设置游戏,引入新课:

  首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

  游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: × × × × ;

  游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;

  最后引导学生思考这两个算式的特点,引入新课。

  这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

  2、合作交流,探索新知:

  先让学生分组讨论下面算式特点:① × × × × ,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)

  接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a 。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。

  n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

  3、迁移训练,总结规律:

  在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙- ﹚×﹙- ﹚×﹙- ﹚,④﹙- ﹚×﹙- ﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。

  本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

  4、应用新知,尝试练习:

  本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚ 、-2 、﹙ ﹚ ,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2 ,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。

  第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

  5、归纳小结,形成体系:

  首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

  四、设计说明

  本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。


《有理数的乘方》优秀教案3篇(扩展9)

——有理数的减法的说课稿

有理数的减法的说课稿1

  一说教材:

  (一)地位、作用:

  本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用

  (二)教学目标:

  1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。

  2、能力目标:培养学生探究思维能力和分析解决问题的能力

  3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。

  (三)重点、难点:

  重点:有理数的减法法则,熟练地进行有理数的减法运算

  难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算

  二、说教学方法:

  根据本节教材内容和学生的实际水*,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  附教学工具:温度计、投影仪、多媒体

  三、说学法:

  根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

  四、说教学程序:

  (一)引入课题环节:

  1、复习有理数的加法法则,为新课的讲授作好铺垫。

  2、(提问)用算式表示:与—3的和等于—10的数。

  (根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的"兴趣,从而引出本节课的课题。

  (二)新课讲解环节:

  1、通过投影仪给出以下算式:

  减法加法

  (+10)—(+3)=+7(+10)+(—3)=+7

  让学生比较上面这两个算式并讨论后得出:

  (+10)—(+3)=(+10)+(—3)

  再给出以下算式:

  减法加法

  (+5)—(+2)=+3(+5)+(—2)=+3

  继续让学生比较上面这两个算式并讨论后得出:

  (+5)—(+2)=(+5)+(—2)

  从而,它启发我们有理数的减法可以转化成加法进行

  2、讲解课本p80的内容,回答复习题2提出的问题即如何求(—10)—(—3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。

  文字叙述:减去一个数,等于加上这个数的相反数

  字母表示:a—b=a+(—b)(说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)

  强调运用法则时:被减数不变,减号变加号,减数变成其相反数减数变号

  (减法============加法)

  3、出示温度计,用多媒体出现(如p81的图2—20),并进行动画演示,通过求15℃比5℃高多少?15℃比—5℃高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1

推荐访问:乘方 有理数 教案 《有理数乘方》教案3篇 《有理数的乘方》优秀教案1 《有理数的乘方》优秀教案1年级